PROBLEM OF THE WEEK

Solution of Problem No. 13 (Fall 2003 Series)

Problem: Determine the supremum and infimum of $C(\alpha, \beta, \gamma)=\cos 2 \alpha+\cos 2 \beta+\cos 2 \gamma$, where α, β, γ are the angles of a triangle.

Solution (by Dr. Troy Siemers, Fac. Virginia Military Inst., Lexington, VA)
Supremum is 3, infimum is -1.5 .
Since cosine is bounded above by one, C is bounded by 3. But, the (degenerate) triangle with $\alpha=\beta=0, \gamma=\pi$ gives $C(0,0, \pi)=3$, so this is the supremum.

Since α, β, γ are the angles of a triangle, $\gamma=\pi-\alpha-\beta$, we can write C as

$$
C(\alpha, \beta, \pi-\alpha-\beta)=\cos (2 \alpha)+\cos (2 \beta)+\cos (2(\pi-\alpha-\beta))
$$

Setting the α and β partial derivatives of C equal to 0 , we see that the only other critical point occurs at $(\pi / 3, \pi / 3, \pi / 3)$ to give an infimum of $C(\pi / 3, \pi / 3, \pi / 3)=-1.5$.

Also solved by:
Undergraduates: Jason Anema (Jr. MA), Jignesh V. Mehta (So. Phys)

Graduates: Kshitij Shrotri (AAE)

Faculty: Steven Landy (Physics at IUPUI)

Others: Georges Ghosn (Quebec), Namig Mammadov (Baku, Azerbaijan), Rob Pratt, with Laiza Dela Fuente \& Fang Chen (UNC, Chapel Hill)

