PROBLEM OF THE WEEK

 Solution of Problem No. 1 (Fall 2004 Series)Problem: Determine the last two decimal digits of the numbers

$$
A=7 \cdot 7 \cdot 7 \cdots 7, \quad B=7^{7^{7^{\cdot^{7}}}}
$$

There are 2004 sevens in both A and B.
Solution (by Georges Ghosn, Quebec)
Using the congruence modulo 100:

$$
7^{4} \equiv 1 \quad(\bmod 100) \Rightarrow A=7^{2004}=\left(7^{4}\right)^{501} \equiv 1 \quad(\bmod 100)
$$

so the last two digits of A are 01 .

$$
B=7^{. .^{7}}=7^{c}
$$

since $7^{4} \equiv 1(\bmod 100)$, in order to know the congruence of B modulo 100 we have to find the congruence of C modulo 4 .
But $7^{2} \equiv 1(\bmod 4)$ and $c=7^{D}(D$ is odd number $)$ implies

$$
\begin{aligned}
c=7^{2 E+1} & \Rightarrow c \equiv 3(\bmod 4) \\
& \Rightarrow c=4 k+3
\end{aligned}
$$

hence $B=7^{4 k+3} \Rightarrow B=\left(7^{4}\right)^{k} \cdot 7^{3} \equiv 7^{3} \equiv 43(\bmod 100)$ so the last two digits of B are 43.

Also, at least partially solved by:
Undergraduates: Iuri Bachnivski (Jr. ECE), Mehmet Demirci (Jr. CS), Kedar Hippalgaonkar (Jr. ME), Akira Matsudaira (Jr. ECE), Tu Tam Nguyen Phan (Sci.), Adam Welborn (Jr. CS)

Graduates: Zhongyin John Daye (Stat), Sridhar Maddipati (Ch.E.), Ashish Rao (ECE), K. H. Sarma (Nucl), Amit Shirsat (CS), Qi Xu (Ch.E.)

Faculty: Steven Landy (Phys, IUPUI)
Others: George Barnett (Woodland CC, CA), Sanjiv (ECE, Waterloo)

There were 16 unacceptable solutions.
Comment: The correct answer, when arrived by faulty reasoning, is not an acceptable solution.

