PROBLEM OF THE WEEK Solution of Problem No. 4 (Fall 2004 Series)

Problem: Find all positive integers m, n such that

$$2^m = 3^n + 5.$$
 (1)

Solution (by the Panel)

It is easy to see that m = 3, n = 1; m = 5, n = 3 are all solutions with $m \le 5$. We will show that they are the only ones.

Let m > 5. Then $3^n + 5$ is divisible by $2^6 = 64$. On the other hand, $3^{16} \equiv 1 \mod 64$, and a direct calculation shows that $3^{11} \equiv -5$, and $3^k \not\equiv -5$ for all other $k = 0, \ldots, 15$. So, n must be of the form:

$$n = 16k + 11.$$

Now, if we divide (1) by 17, using $3^{16} \equiv 1 \mod 17$, we get $3^{16k+11} \equiv 3^{11} \equiv 7 \mod 17$.

Therefore, $2^m \equiv 12 \mod 17$.

On the other hand, the possible remainders of 2^m , divided by 17 are

and in particular, $2^8 \equiv 1 \mod 17$.

Therefore $2^m \equiv 12 \mod 17$ is impossible.

There were no acceptable solutions presented.