PROBLEM OF THE WEEK

 Solution of Problem No. 4 (Fall 2004 Series)Problem: Find all positive integers m, n such that

$$
\begin{equation*}
2^{m}=3^{n}+5 \tag{1}
\end{equation*}
$$

Solution (by the Panel)
It is easy to see that $m=3, n=1 \quad ; \quad m=5, n=3$ are all solutions with $m \leq 5$.
We will show that they are the only ones.
Let $m>5$. Then $3^{n}+5$ is divisible by $2^{6}=64$. On the other hand, $3^{16} \equiv 1 \bmod 64$, and a direct calculation shows that $3^{11} \equiv-5$, and $3^{k} \not \equiv-5$ for all other $k=0, \ldots, 15$. So, n must be of the form:

$$
n=16 k+11 .
$$

Now, if we divide (1) by 17 , using $3^{16} \equiv 1 \bmod 17$, we get $3^{16 k+11} \equiv 3^{11} \equiv 7 \bmod 17$.
Therefore, $2^{m} \equiv 12 \bmod 17$.
On the other hand, the possible remainders of 2^{m}, divided by 17 are

$$
2,4,8,16,15,13,9,1
$$

and in particular, $2^{8} \equiv 1 \bmod 17$.
Therefore $2^{m} \equiv 12 \bmod 17$ is impossible.

There were no acceptable solutions presented.

