PROBLEM OF THE WEEK

 Solution of Problem No. 6 (Fall 2004 Series)Problem: Determine the linear function $L(x)=a x+b$ for which

$$
\max _{0 \leq x \leq 1}|x \ln x-L(x)|
$$

is least. Prove your answer. Here, $x \ln x$ is extended to $x=0$ by continuity.
Solution (by the Panel)
Denote $f(x)=x \ln x, \varepsilon(L)=\max _{0 \leq x \leq 1}|f(x)-L(x)|$, where $L(x)$ is a linear function. We will show that the answer is $L_{0}(x)=-1 /(2 e)$ (then $\left.\varepsilon\left(L_{0}\right)=1 /(2 e)\right)$.

Let $L(x)$ be any linear function with $\varepsilon(L)<1 /(2 e)$. Then $|L(0)|<1 /(2 e),|L(1)|<1 /(2 e)$ because $f(0)=f(1)=0$. Since $L(x)$ is linear, then $|L(1 / e)|<1 /(2 e)$ as well. Since $f(1 / e)=-1 / e$, we get $\varepsilon(L)>1 /(2 e)$, which is a contradiction. On the other hand, if $\varepsilon(L)=1 /(2 e)$, then the same arguments yield $L=L_{0}$.

Therefore, $L_{0}(x)$ is the unique linear function minimizing $\varepsilon(L)$.

Solved by:

Undergraduates: Al-Sharif Al-Housseing, Tom Rice (CE)
Others: Georges Ghosn (Quebec), Thomas Pollom (HS student, Indianapolis) S. Sanjiv (ECE, Waterloo)

