PROBLEM OF THE WEEK

 Solution of Problem No. 9 (Fall 2004 Series)Problem: Show that for any positive integer n, the number $(1+\sqrt{2})^{n}$ differs from an integer by less than $1 / 2^{n}$.

Solution (by Georges Ghosn, Quebec, edited by the Panel)
Using the binomial theorem:

$$
(1+\sqrt{2})^{n}+(1-\sqrt{2})^{n}=\sum_{p=0}^{n}\binom{n}{p}(\sqrt{2})^{p}+\sum_{p=0}^{n}\binom{n}{p}(-\sqrt{2})^{p}=2 \sum_{p=0}^{2 p \leq n}\binom{n}{2 p} 2^{p}
$$

is an integer. Since $\left|(1-\sqrt{2})^{n}\right|=\frac{1}{(1+\sqrt{2})^{n}}<\frac{1}{2^{n}}$, we deduce that $(1+\sqrt{2})^{n}$ differs from an integer by less than $\frac{1}{2^{n}}$.

Also solved by:
Undergraduates: Al-Sharif Al-Housseiny (So. CE), Yuandong Tian (Sr. ECE)
Graduates: Ashish Rao (ECE), Amit Shirsat (CS)
Others: P. Chebulu (CMU, Pittsburg), Byungsoo Kim (Seoul Natl. Univ.), Steven Landy (IUPUI), Graeme McRae, Naming Mammadov (Azerbaijan), Thomas Pollom (HS student, Indianapolis), Jim Schofield (Rosemont HS, Barnsville, MN)

Update on Problem 8: This problem was solved at least partially, also by Byungsoo Kim and Thomas Pollom. The panel appologizes for not listing their names under the solution of Problem 8.

