PROBLEM OF THE WEEK

Solution of Problem No. 11 (Fall 2004 Series)

Problem: Show that there exists a constant C, such that, for any polynomal P of degree 2004, we have

$$
\left|P(1)-P^{\prime}(1)+P(-1)+P^{\prime}(-1)\right| \leq C \int_{-1}^{1}|P(x)| d x
$$

where $P^{\prime}=d P / d x$.
For extra credit, show that $C \geq 4,000,000$.

Solution

Let

$$
P=a_{0}+a_{1} x+\cdots+a_{2004} x^{2004}
$$

and consider the function

$$
f\left(a_{0}, a_{1}, \ldots, a_{2004}\right)=\frac{\left|P(1)-P^{\prime}(1)+P(-1)+P^{\prime}(-1)\right|}{\int_{-1}^{1}|P(x)| d x}
$$

In other words, we regard the right-hand side as a function of the coefficients of P. The function f is homogeneous of order zero, i. e.,

$$
f\left(t a_{0}, t a_{1}, \ldots, t a_{2004}\right)=f\left(a_{0}, a_{1}, \ldots, a_{2004}\right), \quad \forall t \neq 0
$$

Next, f is continuous on the unit sphere

$$
a_{0}^{2}+a_{1}^{2}+\cdots+a_{2004}^{2}=1,
$$

therefore it has a maximal value there, let us call it C. By the homogeneity, we also have $f \leq C$ for any other $\left(a_{0}, a_{1}, \ldots, a_{2004}\right) \neq 0$. This completes the proof. Note that in the proof we used the fact that $\int_{-1}^{1}|P(x)| d x=0 \Longleftrightarrow P \equiv 0$.

To show that any such constant is greater or equal to $4,000,000$, apply the inequality with $P(x)=x^{2004}$.

Solved by:

Georges Ghosn (Quebec)

