PROBLEM OF THE WEEK
Solution of Problem No. 12 (Fall 2004 Series)

Problem: Let a,b,c,d, and ¢, (n =0,1,2,...) be complex numbers
such that d # 0 and

az+b

m:CO+01Z+C2Z2+"'+CTLZ"—|—,,_

for |z| small enough.

Show that
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Solution # 1 (by Georges Ghosh, Quebec)

is independent of n.
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pi — and dcp49 +ccpy1 +c¢, =0 Vn > 0. So,
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Finally, if coco — ¢3 # 0 <= abc — b* — a%d # 0
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else (abc — b? — a*d = 0)
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and the ratio is not defined.



Solution # 2 (by Ashish Rao, Graduate student, ECE; edited by the Panel)

We start with
(az+b) = (22 +cz+d)(co+crz+coz® + - Fecp2" +...).
Comparing the coefficients of 2"*2 and 2"*3 for n >0 on both sides,

OZCn+C-Cn+1+d-Cn+2,

0=cpi1tc cppa+d-cpys.

This is a system of linear equations for ¢ and d.
Using Kramer’s rule, the solution is:

det ( Cn Cn—l—l)
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The given ratio is d (it is independent of n).
We still need the condition

abc —b* —a?d # 0

to be sure that the denominator is not zero.

Also solved by:

Undergraduates: Yuandong Tian (Sr. ECE), Huai-Tzu You

Others: Byungsoo Kim (Seoul Natl. Univ.), Steven Landy (IUPUI)



