PROBLEM OF THE WEEK

Solution of Problem No. 12 (Fall 2004 Series)

Problem: Let a, b, c, d, and $c_{n}(n=0,1,2, \ldots)$ be complex numbers such that $d \neq 0$ and

$$
\frac{a z+b}{z^{2}+c z+d}=c_{0}+c_{1} z+c_{2} z^{2}+\cdots+c_{n} z^{n}+\ldots
$$

for $|z|$ small enough.
Show that

$$
\operatorname{det}\left(\begin{array}{cc}
c_{n} & c_{n+1} \\
c_{n+1} & c_{n+2}
\end{array}\right) / \operatorname{det}\left(\begin{array}{cc}
c_{n+1} & c_{n+2} \\
c_{n+2} & c_{n+3}
\end{array}\right)
$$

is independent of n.
Solution \# 1 (by Georges Ghosh, Quebec)
From the equality $b+a z=\left(d+c z+z^{2}\right) \cdot \sum_{i=0}^{+\infty} c_{i} z^{i}$
we deduce $c_{0}=\frac{b}{d}, c_{1}=\frac{a d-b c}{d^{2}}$ and $d c_{n+2}+c c_{n+1}+c_{n}=0 \quad \forall n \geq 0$. So,

$$
\begin{aligned}
c_{n+1} c_{n+3}-c_{n+2}^{2} & =c_{n+1}\left(-\frac{c}{d} c_{n+2}-\frac{1}{d} c_{n+1}\right)-c_{n+2}^{2} \\
& =-\frac{c}{d} c_{n+1} c_{n+2}-c_{n+2}^{2}-\frac{1}{d} c_{n+1}^{2} \\
& =c_{n+2}\left(-\frac{c}{d} c_{n+1}-c_{n+2}\right)-\frac{1}{d} c_{n+1}^{2} \\
& \left.=\frac{1}{d} c_{n+2} c_{n}-c_{n+1}^{2}\right)=\cdots=\frac{1}{d^{n+1}}\left(c_{2} c_{0}-c_{1}^{2}\right) .
\end{aligned}
$$

Finally, if $c_{2} c_{0}-c_{1}^{2} \neq 0 \Longleftrightarrow a b c-b^{2}-a^{2} d \neq 0$

$$
\operatorname{det}\left(\begin{array}{cc}
c_{n} & c_{n+1} \\
c_{n+1} & c_{n+2}
\end{array}\right) / \operatorname{det}\left(\begin{array}{cc}
c_{n+1} & c_{n+2} \\
c_{n+2} & c_{n+3}
\end{array}\right)=d
$$

else $\left(a b c-b^{2}-a^{2} d=0\right)$

$$
\operatorname{det}\left(\begin{array}{cc}
c_{n} & c_{n+1} \\
c_{n+1} & c_{n+2}
\end{array}\right)=\operatorname{det}\left(\begin{array}{cc}
c_{n+1} & c_{n+2} \\
c_{n+2} & c_{n+3}
\end{array}\right)=0
$$

and the ratio is not defined.

Solution \# 2 (by Ashish Rao, Graduate student, ECE; edited by the Panel)
We start with

$$
(a z+b)=\left(z^{2}+c z+d\right)\left(c_{0}+c_{1} z+c_{2} z^{2}+\cdots+c_{n} z^{n}+\ldots\right) .
$$

Comparing the coefficients of z^{n+2} and z^{n+3} for $n \geq 0 \quad$ on both sides,

$$
\begin{array}{r}
0=c_{n}+c \cdot c_{n+1}+d \cdot c_{n+2}, \\
0=c_{n+1}+c \cdot c_{n+2}+d \cdot c_{n+3} .
\end{array}
$$

This is a system of linear equations for c and d.
Using Kramer's rule, the solution is:

$$
d=\frac{\operatorname{det}\left(\begin{array}{cc}
c_{n} & c_{n+1} \\
c_{n+1} & c_{n+2}
\end{array}\right)}{\operatorname{det}\left(\begin{array}{ll}
c_{n+1} & c_{n+2} \\
c_{n+2} & c_{n+3}
\end{array}\right)}
$$

The given ratio is d (it is independent of n).
We still need the condition

$$
a b c-b^{2}-a^{2} d \neq 0
$$

to be sure that the denominator is not zero.

Also solved by:

Undergraduates: Yuandong Tian (Sr. ECE), Huai-Tzu You

Others: Byungsoo Kim (Seoul Natl. Univ.), Steven Landy (IUPUI)

