PROBLEM OF THE WEEK

Solution of Problem No. 13 (Fall 2004 Series)

Problem: For $k \geq 2$ and $b \geq 2 \tan \frac{\pi}{2 k}$, prove that, up to congruence, there is a unique polygon with $2 k$ sides, each of length b, circumscribed (once) about the unit circle.

The formulation of the problem is wrong. The correct one is the following:
Let $k \geq 2$. Prove that, up to congruence, there is a unique polygon with $2 k$ sides, each of length b, circumscribed (once) about the unit circle, if

$$
\begin{equation*}
2 \tan \frac{\pi}{2 k} \leq b<\tan \frac{\pi}{k} \tag{1}
\end{equation*}
$$

If $k=2$, then the second inequality above is reduced to $b<\infty$, i. e., the only requirement then is $2 \leq b$.
Solution (by the Panel)
Let A_{1}, A_{2}, A_{3} be three consecutive vertices of the polygon, if it exists. Let M_{1} and M_{2} be the common points of $A_{1} A_{2}$ and $A_{2} A_{3}$ with the circle, respectively. Then it is easy to show that $\angle M_{1} O A_{2}=\angle M_{2} O A_{2}$ (let us call it α), and $\angle A_{1} O M_{1}=\angle A_{3} O M_{2}$ (let us call it β), where O is the center of the circle. We can repeat those arguments for A_{2}, A_{3} and A_{4}, etc. As a consequence of that, we get that $\angle A_{j} O A_{j+1}=\alpha+\beta, j=1, \ldots, 2 k$ with the convention $A_{2 k+1}=A_{1}$. Thus, $2 k(\alpha+\beta)=2 \pi$, so

$$
\begin{equation*}
\alpha+\beta=\frac{\pi}{k}, \quad \alpha>0, \quad \beta>0 . \tag{2}
\end{equation*}
$$

We also have

$$
\begin{equation*}
\tan \alpha+\tan \beta=b \tag{3}
\end{equation*}
$$

On the other hand, it is easy to see that if we have a solution of (2), (3), then there exists a polygon with the required properties. Each solution $\left(\alpha_{0}, \beta_{0}\right)$ corresponds to polygons related to each other by rotation; on the other hand $\left(\beta_{0}, \alpha_{0}\right)$ is also a solution, and it corresponds to polygons obtained from the first group by symmetry about a line passing through O.

So the problem reduces to the following: Prove that under the condition (1), there is unique solution of (2), (3), up to the symmetry $(\alpha, \beta) \mapsto(\beta, \alpha)$. The latter follows from analysis of the function

$$
f(\alpha)=\tan \alpha+\tan (\pi / k-\alpha), \quad 0 \leq \alpha \leq \pi / k
$$

The function f is positive, attains a minimum $f_{\min }=2 \tan \frac{\pi}{2 k}$ at $\alpha=\frac{\pi}{2 k}$, it is decreasing for $0<\alpha<\frac{\pi}{2 k}$ and increasing for $\frac{\pi}{2 k}<\alpha<\frac{\pi}{k}$. At the endpoints, $f(0)=f\left(\frac{\pi}{k}\right)=\tan \frac{\pi}{k}$ (which equals $+\infty$, if $k=2$), so $f_{\max }=\tan \frac{\pi}{k}$. Now, $f(\alpha)=b$ is solvable for any $b \in\left[f_{\min }, f_{\max }\right]$, and the requirement that $\alpha>0, \beta>0$, actually implies that we must have $b<f_{\max }$. Under the condition $b \in\left[f_{\min }, f_{\max }\right]$, which is equivalent to (1), there are two symmetric roots in $(0, \pi / k)$, that coincide if $b=2 \tan \frac{\pi}{2 k}$, and this is what we had to prove.
Remark. If $k>2$, and $b=\tan \frac{\pi}{k}$, such a (degenerate) polygon still exists. It is a regular polygon with k sides but if we count the points of contact with the circle as vertices, it would have $2 k$ sides. Example: a square circumscribed about the unit circle, with the points of contact considered as additional vertices.

Solved by:

Undergraduates: Yuandong Tian (Sr. ECE)
Others: Georges Ghosn (Quebec)

