PROBLEM OF THE WEEK

Solution of Problem No. 12 (Fall 2005 Series)

Problem: Let $P(x)$ be a polynomial of odd degree with real coefficients. Let a be a fixed real number and assume that $P^{\prime \prime}(a) \neq 0$. Prove that for any $t \in\left(0, \frac{1}{2}\right)$ there exists $b \neq a$ such that

$$
\frac{P(b)-P(a)}{b-a}=P^{\prime}(t b+(1-t) a)
$$

Solution (by Bob Hanek)

Consider the polynomial $Q(x)=P(x+a)-P(a)-x P^{\prime}(t x+a)$. Since P is of odd degree and $P^{\prime \prime}(a) \neq 0, P$ is of at least degree three and

$$
\begin{aligned}
& Q^{\prime}(x)=P^{\prime}(x+a)-P^{\prime}(t x+a)-t x P^{\prime \prime}(t x+a) \quad \text { and } \\
& Q^{\prime \prime}(x)=P^{\prime \prime}(x+a)-2 t P^{\prime \prime}(t x+a)-t^{2} x P^{\prime \prime \prime}(t x+a) .
\end{aligned}
$$

From which it follows that $Q(0)=Q^{\prime}(0)=0$ and $Q^{\prime \prime}(0)=(1-2 t) P^{\prime \prime}(a) \neq 0$. Consequently, $Q(x)=x^{2} R(x)$ for some odd degree polynomial, $R(x)$, with $R(0) \neq 0$. Since $R(x)$ is of odd degree, it must have at least one real zero, and since $R(0) \neq 0$, this implies that there exists a real number $\xi \neq 0$ such that $R(\xi)=0$. It follows that $Q(\xi)=0$ and therefore

$$
\frac{P(\xi+a)-P(a)}{\xi}=P^{\prime}(t \xi+a) .
$$

The result follows by taking $b=\xi+a$.

At least partially solved by:

Stephen Casey (Ireland), Prithwijit De (Ireland), Georges Ghosn (Quebec), Sridharakusmar Narasimhan (Postsdam, NY), Steve Spindler (Chicago), David Stigant (Teacher, Houston, TX)

