PROBLEM OF THE WEEK

Solution of Problem No. 14 (Fall 2005 Series)

Problem: Given a triangle $A B C$, find a triangle $A_{1} B_{1} C_{1}$, so that
(1) $A_{1} \in B C, B_{1} \in C A, C_{1} \in A B$;
(2) the centroids of $\triangle A B C$ and $\triangle A_{1} B_{1} C_{1}$ coincide; and subject to (1) and (2), $\triangle A_{1} B_{1} C_{1}$ has minimal area.

Solution (by Georges Ghosn (Quebec)
There are 3 real numbers α, β and γ in $(0,1)$ which verify:

$$
\overrightarrow{B A_{1}}=\alpha \overrightarrow{B C} \quad C \vec{B}_{1}=\beta \overrightarrow{C A} \quad \text { and } \quad A \vec{C}_{1}=\gamma \overrightarrow{A B}
$$

The centroids of $\triangle A B C$ and $\triangle A_{1} B_{1} C_{1}$ coincide implies the existence of a point G such that $\overrightarrow{G A}+\overrightarrow{G B}+\overrightarrow{G C}=\vec{O}$ and $\overrightarrow{G C_{1}}+G \vec{A}_{1}+G \vec{B}_{1}=\vec{O}$. Therefore by subtracking these relations we get: $A \vec{C}_{1}+B \overrightarrow{A A}_{1}+C \vec{B}_{1}=\vec{O} \Leftrightarrow \gamma \overrightarrow{A B}+\alpha \overrightarrow{B C}+\beta \overrightarrow{C A}=0 \Leftrightarrow(\gamma-\beta) \overrightarrow{A B}+(\alpha-\beta) \overrightarrow{B C}=$ $\vec{O} \Leftrightarrow \alpha=\beta=\gamma$ since $\overrightarrow{A B}$ and $\overrightarrow{B C}$ are non-colinear vectors. Therefore the above logical equivalences show that the conditions $\alpha=\beta=\gamma$ is a necessary and sufficient conditions for the centroids of $\triangle A B C$ and $\triangle A_{1} B_{1} C_{1}$ to coincide. On the other hand, from the area of a triangle formula: area of $\triangle A B C=\frac{1}{2} b c \sin (A)=\frac{1}{2} a c \sin (B)=\frac{1}{2} a b \sin (C)$,
we deduce: area of $\triangle A B_{1} C_{1}=$ area of $\triangle B A_{1} C_{1}=$ area of $\triangle C A_{1} B_{1}=\alpha(1-\alpha)$ (area of $\triangle A B C)$. Therefore area of $\triangle A_{1} B_{1} C_{1}$ is minimal if and only if $\alpha(1-\alpha)$ is maximal. Therefore $\alpha=\frac{1}{2}$ and A_{1}, B_{1} and C_{1} are the midpoints of $B C, C A$ and $A B$ respectively.

At least partially solved by:

Prithwijit De (Ireland), Bob Hanek, Steven Landy (IUPUI Physics staff), Kevin Laster (Indiana), Sridharakusmar Narasimhan (Postsdam, NY), David Stigant (Teacher, Houston, TX)

