PROBLEM OF THE WEEK

Solution of Problem No. 7 (Fall 2005 Series)

Problem: Show that, for all positive integers m, n,

$$
\frac{1 \cdot 5 \cdot 9 \ldots .(4 n-3) \cdot 3 \cdot 7 \cdot 11 \ldots \cdot(4 m-1) \cdot 2^{m+n-1}}{(m+n)!}
$$

is an integer.

Solution I (by Wing-kai Hon, CS, post-doc)
Let N and D denote the numerator and denominator of the above term, respectively. Note that

$$
N=|(-(4 m-1)) \times \cdots \times(-11) \times(-7) \times(-3) \times 1 \times 5 \times 9 \times \cdots \times(4 n-3)| \times 2^{m+n-1}
$$

where the first $m+n$ numbers in the \cdots sign forms an arithmetic progression.
Let $N=\Pi p_{i}^{n_{i}}$ and $D=\Pi p_{i}^{d_{i}}$ denote the unique prime factorization of N and D. If follows that for $p_{i}=2, n_{i}=m+n-1$ and $d_{i}=\left\lfloor\frac{m+n}{2}\right\rfloor+\left\lfloor\frac{m+n}{4}\right\rfloor+\left\lfloor\frac{m+n}{8}\right\rfloor+\ldots$ and for any p_{i} with $2<p_{i} \leq m+n$,

$$
\begin{aligned}
& n_{i} \geq\left\lfloor\frac{m+n}{p_{i}}\right\rfloor+\left\lfloor\frac{m+n}{p_{i}^{2}}\right\rfloor+\left\lfloor\frac{m+n}{p_{i}^{3}}\right\rfloor+\ldots \\
& d_{i}=\left\lfloor\frac{m+n}{p_{i}}\right\rfloor+\left\lfloor\frac{m+n}{p_{i}^{2}}\right\rfloor+\left\lfloor\frac{m+n}{p_{i}^{3}}\right\rfloor+\ldots
\end{aligned}
$$

In other words,

$$
\left.n_{i} \geq d_{i} \quad \forall p_{i} \leq m+n . \quad \text { i.e., } \quad n_{i} \geq d_{i} \quad \forall p_{i} / m+n\right)
$$

Thus, $\frac{N}{D}$ is an integer.

Solution II (by Georges Ghosn, Quebec, edited by the Panel. We present a sketch of the proof only.)
We pose $A(n, m)=\frac{1 \cdot 5 \cdot 9 \ldots \cdot(4 n-3) \cdot 3 \cdot 7 \cdot 11 \ldots \cdot(4 m-1) \cdot 2^{m+n-1}}{(m+n)!}(m \geq 1, m \geq 1)$. We define $R(k)$, row of rank $k(k \geq 2)$, as the set of all $A(n, m)$ such that $m+n=k, m \geq 1, n \geq 1$. We will proceed as follow:

1) show that $R(2)$ and $R(3)$ are sets of integers.
2) show that for any $k \geq 2$, there is at least one integer belonging to $R(k)$, in particular, if $k=2 n, A(n, n)$ is an integer and if $k=2 n+1, A(n+1, n)$ is an integer.
3) for all m, n positive ≥ 2, we show that

$$
A(n, m)+A(n+1, m-1)=8 A(n, m-1)
$$

and by deduction

$$
A(n, m)+A(n-1, m+1)=8 A(n-1, m) .
$$

Finally, by Mathematical induction on k we will show that $R(k)$ is a set of integers.

Also solved by:
Aaditya Muthukumaran (Chennai, India)

