PROBLEM OF THE WEEK

Solution of Problem No. 8 (Fall 2005 Series)

Problem: Assume that $a_{n}>0$ for each n, and that

$$
\sum_{n=1}^{\infty} a_{n}
$$

converges. Prove that

$$
\sum_{n=1}^{\infty} a_{n} \frac{n-1}{n}
$$

converges as well.

Solution I (by Georges Ghosn, Quebec)
We have for $n \geq 2$,

$$
a_{n}^{\frac{n-1}{n}}=\left(a_{n}^{1 / 2} a_{n}^{1 / 2} \cdot a_{n}^{n-2}\right)^{\frac{1}{n}} \leq \frac{2 \sqrt{a_{n}}+(n-2) a_{n}}{n} \quad \text { (Arithmetic-geometric Inequality) }
$$

But $\quad \frac{2 \sqrt{a} n}{n} \leq \frac{1}{n^{2}}+a_{n} \quad$ (because $2 x y \leq x^{2}+y^{2}$),
and $\quad \frac{(n-2) a_{n}}{n} \leq a_{n} \quad$ (because $\left.\frac{n-2}{n} \leq 1\right)$.
Therefore, $0<a_{n}^{\frac{n-1}{n}} \leq \frac{1}{n^{2}}+2 a_{n}$, for each $n \geq 1$. Finally the comparison test shows that $\sum_{n=1}^{\infty} a_{n} \frac{n-1}{n}$ converges since $\sum_{n=1}^{\infty} \frac{1}{n^{2}}+2 a_{n}=\sum_{n=1}^{\infty} \frac{1}{n^{2}}+2 \sum_{n=1}^{\infty} a_{n}$ clearly converges.

Solution II (by the Panel)
Each term a_{n} satisfies either the inequality $0<a_{n} \leq \frac{1}{2^{n}}$ or $\frac{1}{2^{n}}<a_{n}$. In the first case, $a_{n}^{\frac{n-1}{n}} \leq \frac{1}{2^{n-1}}$. In the second one, $a_{n}^{\frac{n-1}{n}}=\frac{a_{n}}{a_{n}^{\frac{1}{n}}} \leq 2 a_{n}$.

Therefore, in both cases,

$$
0<a_{n}^{\frac{n-1}{n}} \leq \frac{1}{2^{n}}+2 a_{n}
$$

The conclusion is now immediate since $\sum \frac{1}{2^{n}}$ converges, and so does $\sum 2 a_{n}$.

There were no other correct solutions to this problem.

