
PROBLEM OF THE WEEK

Solution of Problem No. 8 (Fall 2005 Series)

Problem: Assume that an > 0 for each n, and that

∞∑
n=1

an

converges. Prove that
∞∑
n=1

an
n−1
n

converges as well.

Solution I (by Georges Ghosn, Quebec)

We have for n ≥ 2,
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(Arithmetic–geometric Inequality)

But
2
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n
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+ an (because 2xy ≤ x2 + y2),

and
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n
≤ an (because

n− 2

n
≤ 1).

Therefore, 0 < a
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n2
+ 2an, for each n ≥ 1. Finally the comparison test shows that
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an clearly converges.

Solution II (by the Panel)

Each term an satisfies either the inequality 0 < an ≤
1

2n
or

1

2n
< an. In the first case,
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. In the second one, a
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≤ 2an.

Therefore, in both cases,
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n ≤ 1

2n
+ 2an.

The conclusion is now immediate since
∑

1
2n

converges, and so does
∑

2an.

There were no other correct solutions to this problem.


