PROBLEM OF THE WEEK
Solution of Problem No. 8 (Fall 2005 Series)

Problem: Assume that a,, > 0 for each n, and that
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D
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converges. Prove that
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D an’
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converges as well.
Solution I (by Georges Ghosn, Quebec)
We have for n > 2,
n=1 2\/an, + (n—2)a
an™ = (aX?a¥?. a2_2)% < nt Jan (Arithmetic-geometric Inequality)
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But < = +ay (because 2zy < z2 + y?),
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and (n=2)an < an (because <1).
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Therefore, 0 < an™ < — + 2ay, for each n > 1. Finally the comparison test shows that
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Z:l an, ™ converges since Z:l ) + 2a,, = Z:l ) +2 Z:l an clearly converges.
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Solution II (by the Panel)
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Each term a,, satisfies either the inequality 0 < a,, < on or on < a,. In the first case,
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In the second one, a,” = — < 2a,.
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Therefore, in both cases,
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The conclusion is now immediate since ) 5 converges, and so does ) 2ay,.

There were no other correct solutions to this problem.



