PROBLEM OF THE WEEK

Solution of Problem No. 1 (Fall 2006 Series)

Problem: Let a > b > 0 be fixed numbers. Let Q be a convex planar quadrilateral with consecutive vertices A, B, C, D such that

$$|AB| = |BC| = a,$$
 $|AD| = |DC| = b.$

Determine the extreme values of the distance between the center of mass of the vertices of Q and the center of mass of Q as a plane region.

Solution (by Georges Ghosn, Quebec; edited by the Panel)

B (-Va-c',0)

A (0,-c)

Observe that BD is the perpendicular bisector of AC. Therefore in the coordinate system using BD as x-axis and AC as y-axis we have:

$$A(0,-c)$$
 $B(-\sqrt{a^2-c^2},0)$ $C(0,c)$ $D(\sqrt{b^2-c^2},0),$ $0 < c \le b.$

The center of mass of the vertices of Q is : $I\left(\frac{\sqrt{b^2-c^2}-\sqrt{a^2-c^2}}{4},0\right)$.

The center of mass of the plane region Q is : $X_G = \frac{\int \int_Q x dx dy}{\text{area of } Q}$, $Y_G = 0$.

But

$$\begin{split} \int\!\int_{Q} x dx dy &= \int_{-\sqrt{a^2-c^2}}^{0} x dx \int_{-c \left(1+\frac{x}{\sqrt{a^2-c^2}}\right)}^{c \left(1+\frac{x}{\sqrt{a^2-c^2}}\right)} dy + \int_{0}^{\sqrt{b^2-c^2}} x dx \int_{-c \left(1-\frac{x}{\sqrt{b^2-c^2}}\right)}^{c \left(1-\frac{x}{\sqrt{b^2-c^2}}\right)} dy \\ &= \frac{-c(a^2-c^2)+c(b^2-c^2)}{3} \end{split}$$

and Area of
$$Q = c\sqrt{a^2 - c^2} + c\sqrt{b^2 - c^2}$$
.
Therefore $X_G = \frac{c(\sqrt{b^2 - c^2} + \sqrt{a^2 - c^2})(\sqrt{b^2 - c^2} - \sqrt{a^2 - c^2})}{3c(\sqrt{a^2 - c^2} + \sqrt{b^2 - c^2})} = \frac{\sqrt{(b^2 - c^2)} - \sqrt{(a^2 - c^2)}}{3}$.

Finally, the distance is $|IG| = f(C) = \frac{\sqrt{(a^2 - c^2)} - \sqrt{(b^2 - c^2)}}{12}$, $0 < c \le b$. Next, f is an ncreasing continuous function on [0, b] since

$$f'(C) = \frac{c}{12} \left(\frac{\sqrt{(a^2 - c^2)} - \sqrt{(b^2 - c^2)}}{\sqrt{(a^2 - c^2)(b^2 - c^2)}} \right) > 0$$

on (0,b). Therefore the extreme values are $\frac{\sqrt{(a^2-b^2)}}{12}$ (for c=b) and $\frac{a-b}{12}$ (for c=0). The last one is not reached since $c\neq 0$.

Also, at least partially solved by:

Undergraduates: Alan Bernstein (Sr. ECE), Ramul Kumar (So. E)

Graduates: Tom Engelsman (ECE), Jim Vaught (ECE)

Others: Hoan Duong (San Antonio College), Steven Landy (IUPUI Physics staff)