PROBLEM OF THE WEEK
Solution of Problem No. 1 (Fall 2006 Series)

Problem: Let a > b > 0 be fixed numbers. Let @ be a convex planar quadrilateral with
consecutive vertices A, B, C, D such that

|AB| = |BC|=a, |AD|=|DC|=b.

Determine the extreme values of the distance between the center of mass of the vertices
of @ and the center of mass of @ as a plane region.
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Observe that BD is the perpendicular bisector of AC. Therefore in the coordinate
system using BD as z—axis and AC as y—axis we have:

A(0,—c) B(—Va?-¢2,0) C(0,c) D(v/b2—¢2,0), 0<c<b.
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The center of mass of the vertices of Q is : [ (\/ ¢~ Va? —c ,0).
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and Area of Q = cva2 — ¢2 + ¢cVb2 — 2.
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Therefore Xg =
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Finally, the distance is |IG| = f(C) = via? —c )12 VACE: ), 0 < c<b. Next, fisan
ncreasing continuous function on [0, b] since

i € V(a2 =) —/(b® = c?)
f(O)~1—2—( V(a? = ) (b2 — c?) )>O

(@=5)

on (0,b). Therefore the extreme values are B

(for ¢ = b) and a_1—2_b (for ¢ = 0).
The last one is not reached since ¢ # 0.
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