
PROBLEM OF THE WEEK

Solution of Problem No. 10 (Fall 2006 Series)

Problem:

Prove that for every positive integer n, we have
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Solution (by Georges Ghosn and B. Jeevanesan, edited the Panel)

The sum of the first n terms of the geometric series
∑

(1 + x)k gives:
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Integrating both sides of (1) from 0 to 1 yields:
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At least partially solved by:

Undergraduates: Jignesh Vidyut Metha (Sr. Phys), Xinghang Yuan (ME)

Graduates: Tom Engelsman (ECE) Miguel Hurtado (ECE) Majdi Najin (ABE)

Others: Prithwijit De (Ireland), Steven Landy (IUPUI Physics staff), Steve Spindler

(Chicago)


