PROBLEM OF THE WEEK

Solution of Problem No. 4 (Fall 2006 Series)

Problem: Given that $\left(x_{0}, y_{0}\right), y_{0} \neq 0$ is a rational point on the curve $y^{2}=x^{3}+a x^{2}+b x+c$, with a, b, c rational and that $\left(x_{0}, y_{0}\right)$ is not an inflection point, find two more rational points on the curve.

Solution (by Jonathan Landy, UCLA, edited by the Panel)
If $\left(x_{0}, y_{0}\right)$ is a rational point on the curve, then so is the point $\left(x_{0},-y_{0}\right)$ (this is a distinct point as $y_{0} \neq 0$). To find a third rational point on the curve, we will find the intersection of the tangent line to the curve at $\left(x_{0}, y_{0}\right)$ with the curve. The equation for this tangent line is

$$
\frac{y-y_{0}}{x-x_{0}}=\frac{3 x_{0}^{2}+2 a x_{0}+b}{2 y_{0}} .
$$

A second intersection point of this line with the curve may be found by setting the respective y^{2} values equal, giving

$$
\left[\left(x-x_{0}\right) \cdot \frac{3 x_{0}^{2}+2 a x_{0}+b}{2 y_{0}}+y_{0}\right]^{2}=x^{3}+a x^{2}+b x+c .
$$

Rearrangement gives,

$$
\left(x-x_{0}\right)^{2}-\left\{x+a+2 x_{0}-\left(\frac{3 x_{0}^{2}+2 a x_{0}+b}{2 y_{0}}\right)^{2}\right\}=0 .
$$

A second intersection point of the line with the curve is thus given by $\left(x_{3}, y_{3}\right)$, where

$$
x_{3}=\left(\frac{3 x_{0}^{2}+2 a x_{0}+b}{2 y_{0}}\right)-a-2 x_{0}
$$

and

$$
y_{3}=\left(x_{3}-x_{0}\right)\left(\frac{3 x_{0}^{2}+2 a x_{0}+b}{2 y_{0}}\right)+y_{0} .
$$

This point is rational and distinct from both $\left(x_{0}, y_{0}\right)$ and $\left(x_{0},-y_{0}\right)$, because $\left(x_{0}, y_{0}\right)$ is not an inflection point.
This is a third rational point on the curve.

At least partially solved by:
Hoan Duong (San Antonio College), Georges Ghosn (Quebec), Steven Landy (IUPUI Physics staff)

