PROBLEM OF THE WEEK

Solution of Problem No. 6 (Fall 2006 Series)

Problem:

Show that there exists a constant C such that for any sequence $\left\{a_{n}\right\}$ with positive terms,

$$
\sum_{n=1}^{\infty} \frac{n}{a_{1}+\cdots+a_{n}} \leq C \sum_{n=1}^{\infty} \frac{1}{a_{n}}
$$

whenever the series on the right-hand side converges.
Hint: Consider first monotone sequences $\left\{a_{n}\right\}$.

Solution (by Georges Ghosn, Quebec, edited by the Panel)
We consider first an increasing sequence $\left\{a_{n}\right\}$ with positive terms. For any given $n \geq 1$, we have:

$$
\frac{2 n}{a_{1}+a_{2}+\cdots+a_{2 n}} \leq \frac{2 n}{a_{n+1}+\cdots+a_{2 n}} \leq \frac{2 n}{n a_{n}}=\frac{2}{a_{n}}
$$

and

$$
\frac{2 n+1}{a_{1}+\cdots+a_{2 n+1}} \leq \frac{2 n+1}{a_{n+1}+\cdots+a_{2 n+1}} \leq \frac{2 n+1}{(n+1) a_{n}} \leq \frac{2}{a_{n}}
$$

Therefore:

$$
\sum_{n=1}^{N} \frac{n}{a_{1}+\cdots+a_{n}} \leq \frac{1}{a_{1}}+\frac{2}{a_{1}}+\frac{2}{a_{1}}+\frac{2}{a_{2}}+\frac{2}{a_{2}}+\cdots+\frac{2}{a_{\left[\frac{N}{2}\right]}} \leq 5 \sum_{n=1}^{\left[\frac{N}{2}\right]} \frac{1}{a_{n}}
$$

where $\left[\frac{N}{2}\right]$ is the integer part of $\frac{N}{2}$.
Hence, by the comparison test we deduce:

$$
\sum_{n=1}^{\infty} \frac{n}{a_{1}+\cdots+a_{n}} \leq 5 \sum_{n=1}^{\infty} \frac{1}{a_{n}}
$$

Consider now a sequence $\left\{a_{n}\right\}$ with positive terms. Since reordering the terms does not affect the value towards which the series $\sum_{n=1}^{\infty} \frac{1}{a_{n}}$ converges, we can define an increasing sequence $\left\{b_{n}\right\}$ by reordering the terms of the sequence $\left\{a_{n}\right\}$. Since $a_{n} \rightarrow \infty$, it is easy to see that such reordering exists. Therefore $\sum_{n=1}^{\infty} \frac{1}{a_{n}}=\sum_{n=1}^{\infty} \frac{1}{b_{n}}$. But from above we have $\sum_{n=1}^{\infty} \frac{n}{b_{1}+\cdots+b_{n}} \leq 5 \sum_{n=1}^{\infty} \frac{1}{b_{n}}$, and $\forall n \geq 1, \quad \frac{n}{a_{1}+\cdots+a_{n}} \leq \frac{n}{b_{1}+\cdots+b_{n}}$, because
$b_{1} \ldots b_{n}$ are the first smallest n terms of the sequence $\left\{a_{n}\right\}$. Therefore, the comparison test gives:

$$
\sum_{n=1}^{\infty} \frac{n}{a_{1}+\cdots+a_{n}} \leq \sum_{n=1}^{\infty} \frac{n}{b_{1}+\cdots+b_{n}} \leq 5 \sum_{n=1}^{\infty} \frac{1}{b_{n}}=5 \sum_{n=1}^{\infty} \frac{1}{a_{n}}
$$

Finally C exists and $C=5$ is one of its possible values.
We can show that C can be chosen less or equal to e.
Indeed, $\frac{n}{a_{1}+\cdots+a_{n}} \leq \frac{1}{\left(a_{1} \times \cdots \times a_{n}\right)^{\frac{1}{n}}}=\left(\frac{1}{a_{1}} \times \cdots \times \frac{1}{a_{n}}\right)^{\frac{1}{n}} \quad(A-G$ Inequality $)$ and $\sum_{n=1}^{N}\left(\frac{1}{a_{1}} \times \cdots \times \frac{1}{a_{n}}\right)^{\frac{1}{n}} \leq e \sum_{n=1}^{N} \frac{1}{a_{n}} \quad$ (Carleman's Inequality)

Therefore, the inequality is true with $C=e$.
-There are no other correct solutions for this problem.-

