PROBLEM OF THE WEEK
Solution of Problem No. 6 (Fall 2006 Series)

Problem:

Show that there exists a constant C' such that for any sequence {a,} with positive
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whenever the series on the right-hand side converges.
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Hint: Consider first monotone sequences {ay}.

Solution (by Georges Ghosn, Quebec, edited by the Panel)

We consider first an increasing sequence {a,} with positive terms. For any given n > 1,

we have:
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where {3] is the integer part of Ch

Hence, by the comparison test we deduce:
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Consider now a sequence {a, } with positive terms. Since reordering the terms does not
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affect the value towards which the series Z — converges, we can define an increasing
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sequence {b,} by reordering the terms of the sequence {a,}. Since a, — oo, it is easy
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to see that such reordering exists. Therefore — = Z b But from above we
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by ...b, are the first smallest n terms of the sequence {a,}. Therefore, the comparison
test gives:
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Finally C exists and C' = 5 is one of its possible values.

We can show that C can be chosen less or equal to e.
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Therefore, the inequality is true with C' = e.

——There are no other correct solutions for this problem.—



