PROBLEM OF THE WEEK

Solution of Problem No. 7 (Fall 2006 Series)

Problem:

Given a triangle \triangle, let $d(P), e(P), f(P)$ denote the distances of a point P inside \triangle from the three sides of \triangle and let

$$
M(P)=\max (d(P), e(P), f(P))
$$

Prove that Q in \triangle is the center of the inscribed circle of \triangle if and only if

$$
M(Q)<M(P) \quad \text { for all } \quad P \neq Q, P \text { in } \triangle
$$

Solution (by the Panel)
Let a, b, c be the sides of the triangle \triangle. Then

$$
\begin{equation*}
a d(P)+b e(P)+c f(P)=2 A, \tag{1}
\end{equation*}
$$

where A is the area of \triangle. If $P=Q$, then

$$
r(a+b+c)=2 A
$$

where $r=d(Q)=e(Q)=f(Q)=M(Q)$. Then (1) yields

$$
(a+b+c) M(P) \geq 2 A=(a+b+c) M(Q)
$$

with equality if and only if $P=Q$. This completes the proof.

At least partially solved by:

Undergraduates: Alan Bernstein (Sr. ECE), Nate Orlow (So, Math), Prateek Tandon (E)
Graduates: Tom Engelsman (ECE)

Others: Magnus Botnan (Norway), Yunting Gao (China), George Hokkaken (H.S. student, CA), Jonathan Landy (Grad student, UCLA)

