PROBLEM OF THE WEEK Solution of Problem No. 8 (Fall 2006 Series)

Problem:

Let A be a real 3×3 skew-symmetric matrix and let S be real 3×3 symmetric. Show that the polynomial

$$p(x) = \det(A + xS)$$

has a multiple zero if and only if $p(x) = ax^3$ with same real a.

Solution (by the Panel) Observe first that

$$f(x) = \det(A + xS) = \det(A + xS)^T$$
$$= \det(A - xS) = f(-x).$$

Therefore, f(x) is an odd polynomial of degree 3 or less. Thus,

$$f(x) = ax^3 + bx.$$

If a = 0, there is no multiple root. If $a \neq 0$, then the roots are 0, $\sqrt{-b/a}$, $-\sqrt{-b/a}$ (here, $\sqrt{y} \ge 0$ if $y \ge 0$, and $\text{Im}\sqrt{y} > 0$ if y < 0). The only way two of them can be equal is if b = 0.

This proves the "only if" part. The "if" part is trivial.

At least partially solved by:

<u>Undergraduates</u>: Prateek Tandon (E)

<u>Graduates</u>: Tom Engelsman (ECE), George Hassapis (MA)

<u>Others</u>: Georges Ghosn (Quebec), Steven Landy (IUPUI Physics staff), Ping-Yu Wong (HS student, Granger, IN)