PROBLEM OF THE WEEK

Solution of Problem No. 13 (Fall 2007 Series)

Problem: Show that if

$$
\cos \left(2^{n} x\right)>\cos \left(2^{n} y\right) \quad \text { for all non-negative integers } n
$$

where x and y are real numbers, then $x=2 \pi k$ for some integer k.

Solution (by Pete Kornya, Ivy Tech faculty, Bloomington, IN)
Using the identity $\cos 2 \theta=2 \cos ^{2} \theta-1$, we have $\cos \left(2^{n+1} x\right)>\cos \left(2^{n+1} y\right) \Rightarrow \cos ^{2}\left(2^{n} x\right)>\cos ^{2}\left(2^{n} y\right)$. Since also $\cos \left(2^{n} x\right)>\cos \left(2^{n} y\right)$, it follows that $\cos \left(2^{n} x\right)>0$ for all $n \geq 0$.

Consider the binary expansion $\frac{x}{2 \pi}-\left[\frac{x}{2 \pi}\right]=\sum_{i=1}^{\infty} \delta_{i} 2^{-i}$ with each $i=0$ or 1 . We may assume that there are not repeating 1's from some place m on, since $\sum_{i=m}^{\infty} 2^{-i}=2^{-m+1}$. Therefore if some $\delta_{i}=1$ then there is also a $\delta_{n}=1$ followed by a $\delta_{n+1}=0$. Then

$$
\begin{aligned}
\cos \left(2^{n-1} x\right) & =\cos \left(2^{n-1} \cdot 2 \pi\left(\frac{x}{2 \pi}-\left[\frac{x}{2 \pi}\right]\right)+2^{n-1} \cdot\left[\frac{x}{2 \pi}\right] 2 \pi\right) \\
& =\cos \left(2^{n-1} \cdot 2 \pi \cdot \sum_{i=1}^{\infty} \delta_{i} 2^{-i}\right) \\
& =\cos \left(\pi+\sum_{i=n+2}^{\infty} \delta_{i} 2^{-i+n} \pi\right)
\end{aligned}
$$

But then, since $\pi \leq \pi+\sum_{i=n+2}^{\infty} \delta_{i} 2^{-i+n} \pi<\frac{3 \pi}{2}$, we would have $\cos 2^{n-1} x \leq 0$, a contradiction. Therefore $\delta_{i}=0$ for all i. Then $\frac{x}{2 \pi}-\left[\frac{x}{2 \pi}\right]=0$ and $x=2 \pi\left[\frac{x}{2 \pi}\right]$ as required.

Also solved by:

Undergraduates: Noah Blach (Fr. Math)

Graduates: Richard Eden (Math)

Others: Elie Ghosn (Montreal, Quebec), Steven Landy (IUPUI Physics), Sorin Rubinstein (TAU faculty, Israel)

