PROBLEM OF THE WEEK Solution of Problem No. 13 (Fall 2007 Series)

Problem: Show that if

 $\cos(2^n x) > \cos(2^n y)$ for all non-negative integers n,

where x and y are real numbers, then $x = 2\pi k$ for some integer k.

Solution (by Pete Kornya, Ivy Tech faculty, Bloomington, IN)

Using the identity $\cos 2\theta = 2\cos^2 \theta - 1$, we have $\cos(2^{n+1}x) > \cos(2^{n+1}y) \Rightarrow \cos^2(2^nx) > \cos^2(2^ny)$. Since also $\cos(2^nx) > \cos(2^ny)$, it follows that $\cos(2^nx) > 0$ for all $n \ge 0$.

Consider the binary expansion $\frac{x}{2\pi} - \left[\frac{x}{2\pi}\right] = \sum_{i=1}^{\infty} \delta_i 2^{-i}$ with each i = 0 or 1. We may assume that there are not repeating 1's from some place m on, since $\sum_{i=m}^{\infty} 2^{-i} = 2^{-m+1}$. Therefore if some $\delta_i = 1$ then there is also a $\delta_n = 1$ followed by a $\delta_{n+1} = 0$.

Then

$$\cos(2^{n-1}x) = \cos\left(2^{n-1} \cdot 2\pi \left(\frac{x}{2\pi} - \left[\frac{x}{2\pi}\right]\right) + 2^{n-1} \cdot \left[\frac{x}{2\pi}\right]2\pi\right)$$
$$= \cos\left(2^{n-1} \cdot 2\pi \cdot \sum_{i=1}^{\infty} \delta_i 2^{-i}\right)$$
$$= \cos\left(\pi + \sum_{i=n+2}^{\infty} \delta_i 2^{-i+n}\pi\right).$$

But then, since $\pi \leq \pi + \sum_{i=n+2}^{\infty} \delta_i 2^{-i+n} \pi < \frac{3\pi}{2}$, we would have $\cos 2^{n-1} x \leq 0$, a contradiction. Therefore $\delta_i = 0$ for all *i*. Then $\frac{x}{2\pi} - \left[\frac{x}{2\pi}\right] = 0$ and $x = 2\pi \left[\frac{x}{2\pi}\right]$ as required.

Also solved by:

<u>Undergraduates</u>: Noah Blach (Fr. Math)

Graduates: Richard Eden (Math)

<u>Others</u>: Elie Ghosn (Montreal, Quebec), Steven Landy (IUPUI Physics), Sorin Rubinstein (TAU faculty, Israel)