
PROBLEM OF THE WEEK

Solution of Problem No. 13 (Fall 2007 Series)

Problem: Show that if

cos(2nx) > cos(2ny) for all non–negative integers n,

where x and y are real numbers, then x = 2πk for some integer k.

Solution (by Pete Kornya, Ivy Tech faculty, Bloomington, IN)

Using the identity cos 2θ = 2 cos2 θ − 1, we have

cos(2n+1x) > cos(2n+1y) ⇒ cos2(2nx) > cos2(2ny). Since also cos(2nx) > cos(2ny), it

follows that cos(2nx) > 0 for all n ≥ 0.

Consider the binary expansion
x

2π
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]
=

∞∑
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δi2
−i with each i = 0 or 1. We may

assume that there are not repeating 1’s from some place m on, since

∞∑
i=m

2−i = 2−m+1.

Therefore if some δi = 1 then there is also a δn = 1 followed by a δn+1 = 0.

Then

cos(2n−1x) = cos
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∞∑
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∞∑
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)
.

But then, since π ≤ π +
∞∑

i=n+2

δi2
−i+nπ <

3π

2
, we would have cos 2n−1x ≤ 0, a contradic-

tion. Therefore δi = 0 for all i. Then
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−
[
x

2π

]
= 0 and x = 2π

[
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]
as required.
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