PROBLEM OF THE WEEK

 Solution of Problem No. 2 (Fall 2007 Series)Problem: Let $3 n$ points ($n \geq 2$) be distributed in space so that no 4 points are co-planar. Show that one can draw at least $3 n^{2}$ line segments connecting these points without forming a tetrahedron (with vertices from the given points).

Solution (by Sorin Rubinstein, TAU staff, Israel)
Partition the points into three sets of n points each, and connect two points by a segment if and only if they do not belong to the same set.
Since among the $\binom{3 n}{2}$ possible pairs of points, $3 \cdot\binom{n}{2}$ pairs have both components in the same set, there are:

$$
\binom{3 n}{2}-3 \cdot\binom{n}{2}=\frac{3 n(3 n-1)}{2}-3 \cdot \frac{n(n-1)}{2}=3 n^{2}
$$

segments.
Among any 4 points at least two belong to the same set (because there are only three sets) and therefore are not connected by a segment. Thus the segments chosen this way answer the question.

Also solved by:

Undergraduates: Alan Bernstein (Sr. ECE), Noah Blach (Fr. Math), Nate Orlow (So. Math)

Graduates: David Lomiashvili (Phys.)

Others: Manuel Barbero (New York), Stephen Casey (Ireland), Pete Kornya (Faculty, Ivy Tech), Steven Landy (IUPUI Physics), Matias Victor Moya Giusti (Sr. Univ. de Córdoba)

