
PROBLEM OF THE WEEK

Solution of Problem No. 3 (Fall 2007 Series)

Problem: For any real positive number r, let {r} define the integer closest to r (for

r = k + 1
2
, k ∈ N, choose {r} = k). Evaluate the sum

∞∑
k=1

{√
k
}−3

.

You may use:
∞∑
k=1

k−2 = π2/6.

Solution (by Stephen Casey, University College Cork, Ireland)

Let Sn = {k ∈ Z+ : {
√
k} = n} for each positive integer n.

Then,

k ∈ Sn ⇔ n− 1

2
<
√
k ≤ n+

1

2

⇔
(
n− 1

2

)2

<

(√
k

)2

≤
(
n+

1

2

)2

[since everything is positive]

⇔ n2 − n+
1

4
< k ≤ n2 + n+

1

4
= n2 − n+

1

4
+ 2n

Hence,

Sn = {n2 − n+ 1, n2 − n+ 2, . . . , n2 − n+ 2n}

and

|Sn| = 2n

=⇒
∞∑
k=1

{√
k
}−3

=

∞∑
n=1

∑
k∈Sn

{√
k
}−3

=

∞∑
n=1

(2n)(n−3)

= 2

∞∑
n=1

n−2

= 2

(
π2

6

)
=
π2

3



∞∑
k=1

{√
k
}−3

=
π2

3

Update on POW 1 & 2: Solved also by Noah Blach (Fr. Math).

Also solved by:

Undergraduates: Lokesh Batra (Fr. Engr), Alan Bernstein (Sr. ECE), Noah Blach (Fr.

Math), Hetong Li (Fr. Science)

Graduates: David Lomiashvili (Phys.)

Others: Manuel Barbero (New York), Brian Bradie (Christopher Newport U. VA), Swami

Iyer (U. Massachusetts, CS), Pete Kornya (Faculty, Ivy Tech), Steven Landy (IUPUI

Physics), Matias Victor Moya Giusti (Sr. Univ. de Córdoba), Angel Plaza (ULPGC,

Spain), Sorin Rubinstein (TAU faculty, Israel), Gearóid Ryan (Undergrad, Ireland)


