PROBLEM OF THE WEEK

 Solution of Problem No. 8 (Fall 2007 Series)Problem: Two particles move in the plane so that their positions at time t are $M_{t}=$ $(1+t, 1+t)$ and $N_{t}=(t-1,1-t)$. Let ℓ_{t} be the line through M_{t} and N_{t}. Describe the set S swept out by $\ell_{t}\left(\right.$ i.e., $\left.S=\bigcup_{t=-\infty}^{\infty} \ell_{t}\right)$.

Solution (by Hoan Duong, San Antonio College)
Since the slope of l_{t} is $\frac{(1+t)-(1-t)}{(1+t)-(t-1)}=t$, an equation of the line l_{t} is $y-(1+t)=$ $t[x-(1+t)]$.
Then

$$
\begin{aligned}
S & =\left\{(x, y) \mid(x, y) \in l_{t} \quad \text { for some } t \in R\right\} \\
& =\left\{(x, y) \mid t^{2}-t x+y-1=0 \quad \text { for some } t \in R\right\} \\
& =\left\{(x, y) \left\lvert\, t=\frac{x \pm \sqrt{x^{2}-4(y-1)}}{2} \in R\right.\right\} \\
& =\left\{(x, y) \mid x^{2}-4(y-1) \geq 0\right\} \\
& =\left\{(x, y) \left\lvert\, y \leq \frac{x^{2}}{4}+1\right.\right\} .
\end{aligned}
$$

Also solved by:

Undergraduates: Alan Bernstein (Sr. ECE), Noah Blach (Fr. Math), Hetong Li (Fr. Science), Douglas Murray (So. Civil Engr.), Siddharth Tekriwal (So. Engr.)

Others: Brian Bradie (Christopher Newport U. VA), Thomas Cabaret (France), Kunihiko Chikaya (Kunitachi, Japan), Subham Ghosh (Washington Univ. St. Louis), Elie Ghosn (Montreal, Quebec), Pete Kornya (Faculty, Ivy Tech), Steven Landy (IUPUI Physics), Graeme McRae (Palmdale CA), Sorin Rubinstein (TAU faculty, Israel)

