PROBLEM OF THE WEEK

Solution of Problem No. 12 (Fall 2008 Series)

Problem: Let $1<n_{1} \leq n_{2} \leq \ldots$ be a sequence of positive integers such that (i) no n_{j} is prime and (ii) $\left(n_{i}, n_{j}\right)=1$ if $i \neq j$ (i.e., n_{i} and n_{j} are relatively prime). Show that $\sum_{j=1}^{\infty} \frac{1}{n_{j}}<\infty$.

Solution (by Prithwijit De, Kolkata, India)

For $j \geq 1$ let p_{j} be the smallest prime divisor of n_{j}. Since $\left(n_{i}, n_{j}\right)=1$ if $i \neq j$, the sequence $\left\{p_{j}\right\}_{j \in N}$ consists of distinct terms. Observe that $n_{j} \geq p_{j}^{2}$ for all positive integers j. Therefore, $\sum_{j=1}^{\infty} \frac{1}{n_{j}} \leq \sum_{j=1}^{\infty} \frac{1}{p_{j}^{2}}<\sum_{j=1}^{\infty} \frac{1}{j^{2}}=\frac{\pi^{2}}{6}<\infty$.

The problem was solved by:

Undergraduates: David Elden (So. Mech.E)
Graduates: Richard Eden (Math), Huanyu Shao (CS)

Others: Kaushik Basu (Graduate student, Univ. of Minnesota, Twin Cities), Mark Crawford (Waubonsee Community College instructor), Randin Divelbiss (Undergraduate, University of Wisconsin-Stevens Point), Elie Ghosn (Montreal, Quebec), Steven Landy (IUPUI Physics staff), Sorin Rubinstein (TAU faculty, Israel), Steve Spindler (Chicago), Allan Swett (Florida), Peyman Tavallali (Grad. student, NTU, Singapore), Bill Wolber Jr. (ITaP)

