PROBLEM OF THE WEEK Solution of Problem No. 14 (Fall 2008 Series)

Problem: Suppose the interior of the unit circle is divided into two equal areas by an arc C (i.e., C is a non-self-intersecting path) with end points on the circle. Show that the length of C is at least 2.

Solution (by Sorin Rubinstein, TAU faculty, Israel)

Let \mathcal{C} be an arc with endpoints A and B on the unit circle, and assume that \mathcal{C} divides the interior of the unit circle into two parts S_1 and S_2 of equal areas. In what follows \mathcal{C}_{PQ} will denote the part of the arc between the points P and Q and $|\mathcal{C}_{PQ}|$ the length of this part. Also |PQ| will denote the length of the segment PQ. Clearly $|\mathcal{C}_{PQ}| \geq |PQ|$. If the center O of the unit circle belongs to \mathcal{C} then:

$$|\mathcal{C}_{AB}| = |\mathcal{C}_{AO}| + |\mathcal{C}_{OB}| \ge |AO| + |OB| = 2.$$

Suppose that the center O of the unit circle does not belong to C. Then one of the parts S_1 and S_2 does not contain O. Assume $O \notin S_1$. If the symmetric of C with respect to O does not intersect C, then C and its symmetric divide the interior of the unit circle into three parts with disjoint interiors, one of which contains O and the other two are S_1 and its symmetric with respect to O. But this contradicts the fact that the area of S_1 (and hence of its symmetric) is half the area of the unit circle. Hence the symmetric of C with respect to O intersects C. Therefore there exist on C two points D and E which are symmetric to each other with respect to O and such that the points A, D, E and B are placed on C in this order. Then:

$$|\mathcal{C}_{AB}| = |\mathcal{C}_{AD}| + |\mathcal{C}_{DE}| + |\mathcal{C}_{EB}| \ge |AD| + |DE| + |EB|.$$

On the other hand: |DE| = |DO| + |OE|, $|AD| + |DO| \ge |AO|$ and $|OE| + |EB| \ge |OB|$. Therefore:.

$$|AD| + |DE| + |EB| = (|AD| + |DO|) + (|OE| + |EB|) \ge |AO| + |OB| = 2.$$

Hence $|\mathcal{C}_{AB}| \geq 2$.

Also completely or partially solved by:

<u>Others</u>: Elie Ghosn (Montreal, Quebec), Steven Landy (IUPUI Physics staff), Peter Pang (Sophomore, Univ. of Toronto), Peyman Tavallali (Grad. student, NTU, Singapore)