PROBLEM OF THE WEEK

Solution of Problem No. 2 (Fall 2008 Series)
Problem: Let p be a prime number. Show that $\binom{2 p}{p} \equiv 2 \quad\left(\begin{array}{ll}\text { modulo } & p^{2}\end{array}\right)$.

Solution (by Steve Spindler, Chicago)
Comparing the coefficients of X^{p} from the binomial expansions of $(1+X)^{2 p}=(1+X)^{p}(1+X)^{p}$ yields:

$$
\binom{2 p}{p}=\sum_{k=0}^{p}\binom{p}{k}\binom{p}{p-k}=2+\sum_{k=1}^{p-1}\binom{p}{k}^{2}
$$

Clearly, p does not divide k ! when $k<p$. Therefore, p divides $\binom{p}{k}$ for $1<k<p$, and thus p^{2} divides $\sum_{k=1}^{p-1}\binom{p}{k}^{2}=\binom{2 p}{p}-2$.

Undergraduates: Michael Burkhurt (So. Econ.), Abram Magner (So, CS \& Math)

Graduates: Richard Eden (Math), Ning Shang (Math)
Others: Brian Bradie (Christopher Newport U. VA), Randin Divelbiss (Undergraduate, University of Wisconsin-Stevens Point), Mihaela Dobrescu (Faculty, Christopher Newport Univ.), Hoan Duong (San Antonio College), Elie Ghosn (Montreal, Quebec), Gerard D. Koffi \& Swami Iyer (U. Massachusetts, Boston), Pete Kornya (Faculty, Ivy Tech), Steven Landy (IUPUI Physics staff), Minghua Lin (Shaanxi Normal Univ., China), Zacharia Omerani (Undergrad, Comp. \& Engr. France), Mithil Ramteke (Grad student, Bangalore, India), Sorin Rubinstein (TAU faculty, Israel), Peyman Tavallali (Grad. student, NTU, Singapore), Daniel Vacaru (Pitesti, Romania), Bill Wolber Jr. (ITaP)

