PROBLEM OF THE WEEK Solution of Problem No. 4 (Fall 2008 Series)

Problem: Let f be a real-valued function on $[0, \infty]$ such that $\lim_{x \to \infty} f(x) = \lim_{x \to \infty} f'''(x) = 0.$ Show that $\lim_{x \to \infty} f'(x) = \lim_{x \to \infty} f''(x) = 0.$

Solution (by Minghua Lin & Zhang Xiao, Shaanxi Normal University, China)

 $\forall x \in [0, +\infty)$, we have

$$f(x+1) = f(x) + f'(x) + \frac{f''(x)}{2!} + \frac{f'''(\xi)}{3!}, \quad \xi \in (x, x+1)$$
(1)
$$f(x+2) = f(x) + 2f'(x) + 2f''(x) + \frac{8f'''(\eta)}{3!}, \quad \eta \in (x, x+2)$$
(2)

Let $x \to +\infty$, then $\xi \to +\infty$ and $\eta \to +\infty$. From (1), we have $\lim_{x \to +\infty} \left[f'(x) + \frac{f''(x)}{2} \right] = 0$ (3)

From (2), we have $\lim_{x \to +\infty} [f'(x) + f''(x)] = 0$ (4) From (3) - (4), we have $\lim_{x \to +\infty} f''(x) = 0$ and so $\lim_{x \to +\infty} f'(x) = 0$.

Also solved by:

<u>Graduates</u>: Britain Cox (Math)

<u>Others</u>: Hoan Duong (San Antonio College), Elie Ghosn (Montreal, Quebec), Steven Landy (IUPUI Physics staff), Sorin Rubinstein (TAU faculty, Israel)