PROBLEM OF THE WEEK

Solution of Problem No. 4 (Fall 2008 Series)

Problem: Let f be a real-valued function on $[0, \infty]$ such that
$\lim _{x \rightarrow \infty} f(x)=\lim _{x \rightarrow \infty} f^{\prime \prime \prime}(x)=0$.
Show that $\lim _{x \rightarrow \infty} f^{\prime}(x)=\lim _{x \rightarrow \infty} f^{\prime \prime}(x)=0$.

Solution (by Minghua Lin \& Zhang Xiao, Shaanxi Normal University, China)
$\forall x \in[0,+\infty)$, we have

$$
\begin{align*}
& f(x+1)=f(x)+f^{\prime}(x)+\frac{f^{\prime \prime}(x)}{2!}+\frac{f^{\prime \prime \prime}(\xi)}{3!}, \quad \xi \in(x, x+1) \tag{1}\\
& f(x+2)=f(x)+2 f^{\prime}(x)+2 f^{\prime \prime}(x)+\frac{8 f^{\prime \prime \prime}(\eta)}{3!}, \quad \eta \in(x, x+2) \tag{2}
\end{align*}
$$

Let $x \rightarrow+\infty$, then $\xi \rightarrow+\infty$ and $\eta \rightarrow+\infty$.
From (1), we have $\lim _{x \rightarrow+\infty}\left[f^{\prime}(x)+\frac{f^{\prime \prime}(x)}{2}\right]=0$
From (2), we have $\lim _{x \rightarrow+\infty}\left[f^{\prime}(x)+f^{\prime \prime}(x)\right]=0$
From (3)-(4), we have $\lim _{x \rightarrow+\infty} f^{\prime \prime}(x)=0$ and so $\lim _{x \rightarrow+\infty} f^{\prime}(x)=0$.

Also solved by:

Graduates: Britain Cox (Math)

Others: Hoan Duong (San Antonio College), Elie Ghosn (Montreal, Quebec), Steven Landy (IUPUI Physics staff), Sorin Rubinstein (TAU faculty, Israel)

