
PROBLEM OF THE WEEK

Solution of Problem No. 5 (Fall 2008 Series)

Problem: Evaluate
∞∑
n=1

(−1)n−1

12 + 22 + · · ·+ n2
.

This problem was proposed by Brian Bradie of Christopher Newport University.

Solution (by Richard B. Eden, Math graduate student, Purdue Univ. )

Let S =
∞∑
n=1

an denote the given sum. Since 12 +22 + · · ·+n2 =
n(n+ 1)(2n+ 1)

6
, then

an =
6(−1)n−1

n(n+ 1)(2n+ 1)
. Since

∞∑
n=1

1

n3
converges, then S converges. By partial fractions,

S = 6

∞∑
n=1

(−1)n−1

[
1

n
+

1

n+ 1
− 4

2n+ 1

]
.

Let Tk =

k∑
n=1

(−1)n−1

[
1

n
+

1

n+ 1

]
. Then

Tk =

[
1

1
+

1

2

]
−
[

1

2
+

1

3

]
+ · · ·+ (−1)k−1

[
1

k
+

1

k + 1

]
= 1 + (−1)k−1 1

k + 1
.

So lim
k→∞

Tk = 1. From calculus, we have

∞∑
n=0

(−1)n

2n+ 1
= 1− 1

3
+

1

5
− 1

7
+ · · · = π

4
. *

Therefore,

S = 6

[
lim
k→∞

Tk + 4

∞∑
n=1

(−1)n

2n+ 1

]
= 6

[
1 + 4

(π
4
− 1
)]

= 6π − 18.

* This is because

∞∑
n=0

(−1)n

2n+ 1
x2n+1 = arctan x for |x| ≤ 1.
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