PROBLEM OF THE WEEK

Solution of Problem No. 10 (Fall 2009 Series)

Problem: Prove or disprove: There is at least one straight line normal (perpendicular) to the graph of $y=\cosh x$ at a point $(a, \cosh a)$ and also normal to the graph of $y=\sinh x$ at a point $(b, \sinh b)$

Solution (by Andy Bohn, Sr. Physics, Purdue University)
The perpendicular to $y=\cosh x$ at $x=a$ has slope $\frac{-1}{\sinh a}$. The perpendicular to $y=\sinh x$ at $x=b$ has slope $\frac{-1}{\cosh b}$. Therefore the normal line equations are
From cosh:

$$
\sinh a[y-\cosh a]+[x-a]=0 .
$$

From sinh:

$$
\cosh b[y-\sinh b]+[x-b]=0
$$

For these lines to coincide, their slopes must be equal, or $\sinh a=\cosh b$. Also:

$$
a+\sinh a \cosh a=b+\cosh b \sinh b .
$$

So

$$
b-a=\sinh a \cosh a-\cosh b \sinh b=\cosh b \cosh a-\sinh a \sinh b=\cosh (b-a) .
$$

But $\cosh (b-a)>b-a$ always, so there cannot be such a line.

The problem was also solved by:
Undergraduates: Clara Bennett (Phys), Kilian Cooley (Fr.), Kun-Chieh Wang (Sr. Math) Graduates: Richard Eden (Math), Rodrigo Ferraz de Andrade (Math), Gabriel Sosa (Math), Tairan Yuwen (Chemistry)

Others: Andrea Altamura (Italy), Manuel Barbero (New York), Brian Bradie (Christopher Newport U. VA), Gruian Cornel (IT, Romania), Tom Engelsman (Chicago, IL), Elie Ghosn (Montreal, Quebec), Jeffery Hein (CS \& Math, Purdue Univ. Calumet), Steven Landy (IUPUI Physics staff), Kevin Laster (Indianapolis, IN), Wei-hsiang Lien (Grad student, National Chiao-Tung Univ., Taiwan), Angel Plaza (ULPGC, Spain), Sorin Rubinstein (TAU faculty, Israel), Craig Schroeder (Grad student, Stanford Univ.) Yansong Xu (Brandon, FL), Thierry Zell (Ph.D, Purdue 03)

