PROBLEM OF THE WEEK Solution of Problem No. 14 (Fall 2009 Series)

Problem: A set F is called countable if either F is finite or there is a one-to-one correspondence between the elements of F and the natural numbers. Two sets A and B are called almost-disjoint if $A \cap B$ is finite.

Prove or disprove: There are uncountably many pairwise almost-disjoint sets of natural numbers (positive integers). In more formal language: Does there exist an uncountable set F such that each element of F is a set of natural numbers and each two elements of F are almost-disjoint?

Solution (by Thierry Zell, Hickory, NC)

Let $I=(0.1,1)$, and associate to each $x \in I$ the subset:

$$
A_{x}=\left\{\left\lfloor 10^{n} x\right\rfloor \mid n \in \mathbb{Z}, n \geq 1\right\}
$$

Each subset A_{x} is an infinite subset of the natural numbers. Through our choice of I, each set A_{x} contains exactly one n-digit element for all $n \geq 1$, which represents the first n decimals of x in base 10. If x and y are two distinct elements of I, their decimal expansion must first differ at some rank N; we then have $\left|A_{x} \cap A_{y}\right|=N-1$.

Thus, the collection of subsets $\left\{A_{x} \mid x \in I\right\}$ is an uncountable collection of pairwise almost-disjoint sets.

The problem was also solved by:

Graduates: Rodrigo Ferraz de Andrade (Math), Tairan Yuwen (Chemistry)

Others: Elie Ghosn (Montreal, Quebec), Steven Landy (IUPUI Physics staff), Kevin Laster (Indianapolis, IN), Sorin Rubinstein (TAU faculty, Israel), Craig Schroeder (Grad student, Stanford Univ.)

