PROBLEM OF THE WEEK

 Solution of Problem No. 4 (Fall 2009 Series)Problem: Let $n \geq 5$ be an integer. Show that n is prime if and only if for every decomposition $n=n_{1}+n_{2}+n_{3}+n_{4}$, where $1 \leq n_{1} \leq n_{2} \leq n_{3} \leq n_{4}$ and each n_{i} is an integer, we have $n_{1} n_{4} \neq n_{2} n_{3}$.

Solution (by Kun-Chieh Wang, Senior, Purdue University)

1. Suppose n is a prime and we could find $n_{1}, n_{2}, n_{3}, n_{4} \in \mathbb{N}$ satisfying $n=n_{1}+n_{2}+n_{3}+n_{4}$, $1 \leq n_{1} \leq n_{2} \leq n_{3} \leq n_{4}$, and $n_{1} n_{4}=n_{2} n_{3}$. Let $d_{1}=\operatorname{gcd}\left(n_{1}, n_{2}\right), d_{2}=\operatorname{gcd}\left(n_{3}, n_{4}\right)$, and suppose $n_{1}=d_{1} p_{1}, n_{2}=d_{1} p_{2}, n_{3}=d_{2} q_{1}, n_{4}=d_{2} q_{2}$, where $p_{1}, p_{2}, q_{1}, q_{2} \in \mathbb{N}$, $\operatorname{gcd}\left(p_{1}, p_{2}\right)=1, \operatorname{gcd}\left(q_{1}, q_{2}\right)=1$.

$$
\begin{aligned}
n_{1} n_{4}=n_{2} n_{3} & \Rightarrow\left(d_{1} p_{1}\right)\left(d_{2} q_{2}\right)=\left(d_{1} p_{2}\right)\left(d_{2} q_{1}\right) \\
& \Rightarrow p_{1} q_{2}=p_{2} q_{1}
\end{aligned}
$$

$$
\begin{aligned}
& \operatorname{gcd}\left(p_{1}, p_{2}\right)=1 \text { and } \operatorname{gcd}\left(q_{1}, q_{2}\right)=1 \Rightarrow p_{1} \mid q_{1} \text { and } q_{1} \mid p_{1} \Rightarrow p_{1}=q_{1} \Rightarrow p_{2}=q_{2} \\
& \qquad \begin{aligned}
n & =n_{1}+n_{2}+n_{3}+n_{4}=d_{1} p_{1}+d_{1} p_{2}+d_{2} q_{1}+d_{2} q_{2} \\
& =d_{1} p_{1}+d_{1} p_{2}+d_{2} p_{1}+d_{2} p_{2} \\
& =\left(d_{1}+d_{2}\right)\left(p_{1}+p_{2}\right)
\end{aligned}
\end{aligned}
$$

where $d_{1}+d_{2} \geq 1+1=2, p_{1}+p_{2} \geq 1+1=2 \Rightarrow n$ is a composite number, a contradiction.
2. Suppose n is a composite number. Let $n=a b$ where $a \leq b, a, b \in \mathbb{N}$ and $a, b \geq 2$. Then let $n_{1}=1, n_{2}=(a-1), n_{3}=(b-1), n_{4}=(a-1)(b-1)$. Then we have

$$
\begin{aligned}
& 1 \leq n_{1} \leq n_{2} \leq n_{3} \leq n_{4}, \quad n_{1}, n_{2}, n_{3}, n_{4} \in \mathbb{N}, \quad \text { and } \\
& n_{1}+n_{2}+n_{3}+n_{4}=(1+(a-1))(1+(b-1))=a b=n
\end{aligned}
$$

The problem was also solved by:

Undergraduates: Andy Bohn (Jr. Phys), Kilian Cooley (Fr.), Artyom Melanich (Fr. Engr.), Brent Woodhouse (Fr. Science)

Graduates: Richard Eden (Math), Benjamin Philabaum (Phys.), Sohei Yasuda (Math), Tairan Yuwen (Chemistry)

Others: Neacsu Adrian (Romania), Andrea Altamura (Italy), Manuel Barbero (New York), Gruian Cornel (IT, Romania), Elie Ghosn (Montreal, Quebec), Steven Landy (IUPUI Physics staff), Sorin Rubinstein (TAU faculty, Israel), Henry Shin (Grad student, Harvard Univ.), Steve Spindler (Chicago)

