
PROBLEM OF THE WEEK

Solution of Problem No. 10 (Fall 2010 Series)

Problem:Assume that the roots r1, r2, r3 of the polynomial p(x) = x3 − 2x2 + ax + b

satisfy 0 < ri < 1, i = 1, 2, 3. Show that

(i) 2 ·
√

1− ri ·
√

1− rj ≤ rk, (i, j, k) a permutation of 1,2,3;

(ii) 8a+ 9b ≤ 8;

(iii) the inequality in (ii) is best possible.

Solution (by Steven Landy, IUPUI Physics Dept. Staff)

(i) Since 2 is the sum of the roots, we have r3 = (1 − r1) + (1 − r2) where each bracket

is positive. Then the arithmetic–geometric mean theorem says r3 ≥ 2
√

1− r1

√
1− r2

and likewise for the other permutations.

(ii) Multiplying the three inequalities from (i)

r1 ≥ 2
√

1− r3

√
1− r2

r2 ≥ 2
√

1− r1

√
1− r3

r3 ≥ 2
√

1− r1

√
1− r2

we get

r1r2r3 ≥ 8(1−r1)(1−r2)(1−r3) = 8

(
1−(r1 +r2 +r3)+(r1r2 +r2r3 +r1r3)−r1r2r3

)
.

Now using

(r1 + r2 + r3) = 2 (r1r2 + r2r3 + r1r3) = a − r1r2r3 = b

we get

−b ≥ 8(1− 2 + a+ b) or 8a+ 9b ≤ 8.

(iii) Using r1 = r2 = r3 = 2/3 gives 8a+ 9b = 8. So the inequality is the best possible.
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