
PROBLEM OF THE WEEK

Solution of Problem No. 6 (Fall 2010 Series)

Problem: Show that if f is continuous on [0, 1], then

lim
n→∞

1∫
0

{nx}f(x)dx =
1

2

1∫
0

f(x)dx.

Here, {y} = y − k where k is the integer such that k ≤ y < k + 1.

Solution (by Elie Ghosn, Montreal, Quebec)

We know that for a continuous function f , the integral

∫ 1

0

f(x)dx exists and is equal to

the limit for n→∞ of the Riemann Sum
1

n

n∑
k=1

f

(
k

n

)
. Therefore, we have to show that

lim
n→∞

[ ∫ 1

0

{nx}f(x)dx− 1

2n

n∑
k=1

f

(
k

n

)]
= 0. We have for 1 ≤ k ≤ n, k integer,

k
n∫

k−1
n

{nx}dx =

k
n∫

k−1
n

(nx− k + 1)dx =
1

2n
.

Therefore,

Sn =

∫ 1

0

{nx}f(x)dx− 1

2n

n∑
k=1

f

(
k

n

)
=

n∑
k=1

(∫ k
n

k−1
n

{nx}f(x)dx−
∫ k

n

k−1
n

{nx}f
(
k

n

)
dx

)

=
n∑
k=1

∫ k
n

k−1
n

{nx}
(
f(x)− f

(
k

n

))
dx.

But f , as a continuous function over the compact set [0, 1], is also uniformly continuous.

Therefore, for a given ε > 0 there is α > 0 such that:

∀x, y ∈ [0, 1], |x− y| < α⇒ |f(x)− f(y)| < ε.

Choosing n >
1

α
gives:

∀x ∈
[
k − 1

n
,
k

n

]
,

∣∣∣∣f(x)− f
(
k

n

)∣∣∣∣ < ε.



Therefore, for n >
1

α
, |Sn| ≤

n∑
k=1

∫ k
n

k−1
n

{nx}εdx = ε

( n∑
k=1

1

2n

)
=
ε

2
.

Hence lim
n→∞

Sn = 0.
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