PROBLEM OF THE WEEK Solution of Problem No. 12 (Fall 2011 Series)

Problem: Let P_i , $1 \le i \le n$, be *n* distinct points in the plane, no three of which are in a straight line. Let $n \ge 3$. Prove that the shortest closed curve which goes through all of these points is a simple polygon, meaning a finite union of edges connected end to end, with each edge sharing each of its endpoints with exactly one other edge, and no other intersections of edges.

Solution: (by Gruian Cornel, Cluj–Napoca, Romania)

There is a finite number $N \leq (n-1)!/2$ of closed curves C_1, C_2, \ldots, C_N . For a curve $C = (P_a, P_b, \ldots, P_z, P_a)$, let $l(C) = ||P_aP_b|| + \cdots + ||P_zP_a||$ and without loss of generality assume that $l(C_1) \leq \cdots \leq l(C_N)$. We prove that the closed curve C_1 has no intersections. Suppose that C_1 has at last a intersection, P_1P_3 and P_2P_4 are edges and they intersect in the point O. We have $||OP_1|| + ||OP_2|| > ||P_1P_2||$, $||OP_2|| + ||OP_3|| > ||P_2P_3||$, $||OP_3|| + ||OP_4|| > ||P_3P_4||$ and $||OP_1|| + ||OP_4|| > ||P_1P_4||$. Therefore $||P_1P_3|| + ||P_2P_4|| > ||P_2P_3|| + ||P_1P_4||$ and $||P_1P_3|| + ||P_2P_4|| > ||P_1P_2|| + ||P_3P_4||$. Corresponding to each point P_k there are exactly two entries, so we have the cases:

- 1. $C_1 = (P_1, P_3, \ldots, P_2, P_4, \ldots, P_1)$. Eliminate the edges P_1P_3 and P_2P_4 , add the edges P_1P_2 and P_3P_4 , so we obtain the closed curve $C'_1 = (P_1, P_2, \ldots, P_3P_4, \ldots, P_1) \in \{C_2, \ldots, C_N\}$ with $l(C_1) > l(C'_1)$, a contradiction.
- 2. $C_1 = (P_1, P_3, \ldots, P_4, P_2, \ldots, P_1)$. Eliminate the edges P_1P_3 and P_2P_4 , add the edges P_2P_3 and P_1P_4 , so we obtain the closed curve $C'_1 = (P_1, P_4, \ldots, P_3P_2, \ldots, P_1) \in \{C_2, \ldots, C_N\}$ with $l(C_1) > l(C'_1)$, a contradiction.

Hence the shortest closed curve has no intersections and it is a simple polygon.

Remark:

- 1. It is easy to see there can't be closed proper subloops in C_1 .
- 2. The easiest way to show there is some simple polygon through these points may be via the solution of this problem.
- 3. Some solutions similar to the one above were flawed because the "new" path might not be connected.

The problem was also solved by:

<u>Graduates</u>: Tairan Yuwen (Chemistry)

<u>Others</u>: Charles Burnette (Philadelphia), Hubert Desprez (France), Elie Ghosn (Montreal, Quebec), Steven Landy (IUPUI Physics staff), Kevin Laster (Indianapolis, IN), Sorin Rubinstein (TAU faculty, Israel), Leo Sheck (Faculty, Univ. of Auckland)