PROBLEM OF THE WEEK

Solution of Problem No. 14 (Fall 2011 Series)

Problem: Do there exist two different (that is, non-isomorphic) ellipses having the same area and circumference?

Solution: (by Tairan Yuwen, Graduate Student, Chemistry, Purdue University)

There do not exist two different (not-isomorphic) ellipses having the same area and circumference. We can prove this by showing that two non-isomorphic ellipses with the same area cannot have the same circumference. Since the area of any ellipse is $\pi a b$ (a, b are lengths of semi-major and semi-minor axes respectively), if we consider a set of ellipses with the same area πA and write the length of semi-major axis as $c \sqrt{A}$, then the length of semi-minor axis should be \sqrt{A} / c. Since semi-major axis cannot be shorter than the semi-minor axis, there should be $c \geq 1$, besides, each value of c corresponds to a set of ellipses that are isomorphic to each other. Let's place the ellipse in a Cartesian coordinate system with semi-major axis along x-axis and semi-minor axis along y-axis, then it can be represented as:

$$
\frac{x^{2}}{c^{2} A}+\frac{c^{2} y^{2}}{A}=1
$$

and any point on the ellipse has coordinate:

$$
x=c \sqrt{A} \cos \theta, \quad y=\frac{\sqrt{A}}{c} \sin \theta \quad(0 \leq \theta<2 \pi)
$$

The circumference of the ellipse can be written as the following integral:

$$
\begin{aligned}
C & =\int_{0}^{2 \pi} \sqrt{(d x)^{2}+(d y)^{2}} \\
& =\sqrt{A} \int_{0}^{2 \pi} \sqrt{c^{2} \sin ^{2} \theta+\frac{1}{c^{2}} \cos ^{2} \theta} d \theta \\
& =4 \sqrt{A} \int_{0}^{\frac{\pi}{2}} \sqrt{c^{2} \sin ^{2} \theta+\frac{1}{c^{2}} \cos ^{2} \theta} d \theta \\
& =4 \sqrt{A}\left(\int_{0}^{\frac{\pi}{4}} \sqrt{c^{2} \sin ^{2} \theta+\frac{1}{c^{2}} \cos ^{2} \theta} d \theta+\int_{\frac{\pi}{4}}^{\frac{\pi}{2}} \sqrt{c^{2} \sin ^{2} \theta+\frac{1}{c^{2}} \cos ^{2} \theta} d \theta\right) \\
& =4 \sqrt{A} \int_{0}^{\frac{\pi}{4}}\left(\sqrt{c^{2} \sin ^{2} \theta+\frac{1}{c^{2}} \cos ^{2} \theta}+\sqrt{c^{2} \cos ^{2} \theta+\frac{1}{c^{2}} \sin ^{2} \theta}\right) d \theta \\
& =4 \sqrt{A} \int_{0}^{\frac{\pi}{4}} f(c, \theta) d \theta .
\end{aligned}
$$

Now let's just focus on $f(c, \theta)$ and consider its dependence with c. Since $f(c, \theta)$ is always positive, we can consider $(f(c, \theta))^{2}$ instead:

$$
\begin{aligned}
(f(c, \theta))^{2} & =\left(\sqrt{c^{2} \sin ^{2} \theta+\frac{1}{c^{2}} \cos ^{2} \theta}+\sqrt{c^{2} \cos ^{2} \theta+\frac{1}{c^{2}} \sin ^{2} \theta}\right)^{2} \\
& =c^{2}+\frac{1}{c^{2}}+2 \sqrt{\left(c^{2} \sin ^{2} \theta+\frac{1}{c^{2}} \cos ^{2} \theta\right)\left(c^{2} \cos ^{2} \theta+\frac{1}{c^{2}} \sin ^{2} \theta\right)} \\
& =c^{2}+\frac{1}{c^{2}}+2 \sqrt{\left(c^{4}+\frac{1}{c^{4}}\right) \sin ^{2} \theta \cos ^{2} \theta+\sin ^{4} \theta+\cos ^{4} \theta} .
\end{aligned}
$$

Since the function $g(x)=x+1 / x$ is monotone increasing with x as $x \geq 1$, and x^{2}, x^{4} are monotone increasing with x as $x \geq 0, f(c, \theta)$ is monotone increasing with c as $c \geq 1$ for any fixed value of θ. If we consider the circumference C as a function of c, it should be monotone increasing with c as $c \geq 1$, so two ellipses with different values of c must have different circumferences if they have the same area πA. So there does not exist two non-isomorphic ellipses having the same area and circumference.

The problem was also solved by:

Others: Hubert Desprez (Paris, France), Tom Engelsman (Tampa, FL), Steven Landy (Physics Faculty, IUPUI), Peter Montgomery (Microsoft), Craig Schroeder (Postdoc. UCLA)

