
PROBLEM OF THE WEEK

Solution of Problem No. 9 (Fall 2011 Series)

Problem: Rearrange the series ∗ = 1 −
1
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first term of the rearranged series is a positive term of ∗, the next two terms are negative

terms of ∗, the next three terms are positive terms of ∗, etc., and that the positive terms

are decreasing and the negative terms increasing. So the rearranged series is
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Is the rearranged series convergent?

Solution: (This solution is a conflation of several of the solvers’ solutions.)

Let Sn be the nth partial sum of the original series S and Tn be the nth partial sum of

the rearranged series T . Let qn stand for Σn
k=1k = n(n + 1)/2. It is easily seen that if n is

odd Tqn
is a sum of more of the positive terms than negative terms of the original series,

while if n is even there are more negative terms. This implies that there exists kn between

qn and qn+1 such that Tkn
is composed of equal numbers of positive and negative terms.

Together with the fact that the positive terms appear as summands in T in the order they

appeared in S, as do the negative terms, we see Skn
= Tkn

, and so Tkn
converges to the

sum S. Since Tk, qn ≤ k ≤ qn+1 is monotone, to prove convergence it now suffices to show

that |Tqn+1
−Tqn

| approaches zero as n approaches infinity. Now Tqn+1
−Tqn

is the sum of

n + 1 terms of S, each of them smaller in absolute value than the kn−1st term of S which

is itself smaller in absolute value than the absolute value of the qn−1st term of S, which

equals
1

qn−1

. Thus |Tqn+1
− Tqn

| ≤ (n + 1)/qn−1 which → 0 as n → ∞.
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