
PROBLEM OF THE WEEK

Solution of Problem No. 13 (Fall 2012 Series)

Problem:

What is the maximum value of a and the minimum value of b for which

(

1 +
1

n

)n+a

≤ e ≤

(
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1

n

)n+b

for every positive integer n.

Solution: (by Gruian Cornel, Cluj–Napoca, Romania)

The answer is amax =
1

ln 2
−1 and bmin =

1

2
. Consider the functions f, g, h : [1,∞) → R,

f(x) =
1

ln(1 + 1/x)
− x with f(1) =

1

ln 2
− 1 > 0. Applying L’Hospital twice we have
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=
1

2
.

Now we prove that f is increasing. f ′(x) =
g(x)

(ln(1 + 1/x))2
where g(x) =

1

x
−

1

x + 1
−

(ln(1 + 1/x))2. g′(x) =

(

1

x
−

1

x + 1

)

h(x) where h(x) = 2 ln(1 + 1/x) −
1

x + 1
−

1

x
and

h′(x) =

(

1

x + 1
−

1

x

)2

> 0. Therefore h is increasing, lim
x→∞

h(x) = 0 and so h < 0.

Therefore g′ < 0, g is decreasing, lim
x→∞

g(x) = 0 and so g > 0. Therefore f ′ > 0, and so f

is increasing. Hence f(1) ≤ f(x) <
1

2
so ln
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≤ 1 < ln
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and so

for any n ∈ N
∗,

(

1 +
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)n+ 1

ln 2
−1

≤ e <

(
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)n+ 1

2

. Note that bmin =
1

2
is optimal but

there is no n such that the equality holds in the right side of the double inequality.
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