
PROBLEM OF THE WEEK

Solution of Problem No. 13 (Fall 2013 Series)

Problem:

A standard die is rolled until a six rolls. Each time a six does not roll a fair

coin is tossed, and a running tally of the number of heads minus the number

of tails tossed is kept. Find the probability that the absolute value of this

running tally never equals 3.

[For example, if the die rolls are 5, 2, 1, 6 and the tosses are H, H, T then the

running tally is 1, 2, 1 and so in this case it never equalled 3.]

Your answer should be a fraction.

Solution 1: (by Vladimir Bar Lukianov, Afeka, Tel-Aviv, Israel)

The probability that there are n tosses of a coin is

(

5

6

)n

·
1

6
, since we need to have 1,2,3,4

or 5 for n die rolls and 6 at the (n + 1)− th roll.

Calculate now the probability p(n) that there is no running tally of 3 or −3 during these

n tosses. Observe, that for odd steps the possible values of the tally are 1 or −1, and for

even steps the values are −2, 0 or 2. If follows, that for any n ∈ N

p(2n) = p(2n − 1)

since one can’t get 3 or −3 just after 1 or −1. Moreover, for any n ∈ N

p(2n + 1) =
3

4
p(2n − 1)

since there are only 2 of 8 possibilities to get 3 or −3 from 1 or −1 by two steps. So far

we have for any n ∈ N

p(2n) = p(2n − 1)

p(2n + 1) =
3

4
p(2n − 1)

or in simplified manner

p(n) =

(

3

4

)⌈n−1

2
⌉



where ⌈·⌉ is a sign for the nearest integer from below.

The probability that the absolute value of the running tally never equals 3 is
1

6
+P , where

P =

∞
∑

n=1

(

5

6

)n

·
1

6
·

(

3

4

)⌈n−1

2
⌉

=
1

6

∞
∑

k=1

(

5

6

)2k−1(

3

4

)⌈k−1⌉

+
1

6

∞
∑

k=1

(

5

6

)2k(

3

4

)⌈k− 1

2
⌉

=
1

6

∞
∑

k=0

(

5

6

)2k+1(

3

4

)k

+
1

6

∞
∑

k=0

(

5

6

)2k+2(

3

4

)k

=
1

6
·
5

6

∞
∑

k=0

(

25

36
·
3

4

)k

+
1

6
·
25

36

∞
∑

k=0

(

25

36
·
3

4

)k

=
1

6
·

(

5

6
+

25

36

) ∞
∑

k=0

(

25

36
·
3

4

)k

=
1

6
·
55

36

∞
∑

k=0

(

25

48

)k

=
1

6
·
55

36
·
48

23
=

110

207
.

Thus the answer is

(

1

6
+

110

207

)

=
289

414
.

Solution 2: (by Steven Landy, Physics Faculty, IUPUI)

Let p(x) = the probability that the sum will reach ±3 if it is presently x. If the sum is

zero to start then there is a probability of 5/6 · 1/2 that it will be 1 after one trial, and

5/6 · 1/2 that it will be −1. By symmetry p(1) = p(−1). Expanding probabilities gives

p(0) = 5/6 · 1/2 p(1) + 5/6 · 1/2 p(−1) = 5/6 p(1)

p(1) = 5/12 p(0) + 5/12 p(2)

p(2) = 5/12 p(1) + 5/12.

Solving these gives p(0) = 125/414. The probability that the sum never reaches 3 is

1 − p(0) = 289/414.
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