PROBLEM OF THE WEEK

 Solution of Problem No. 1 (Spring 2001 Series)Problem: The shorter leg of an integer-sided right triangle has length 2001. How short can the other leg be?

Solution (by the Panel)
Let a, b, c be the sides of the triangle. Thus $2001=a<b<c$. Set $c=b+m$. Then $(b+m)^{2}=b^{2}+2001^{2}, m(2 b+m)=2001^{2}$. So m is a divisor of $2001^{2}=3^{2} \cdot 667^{2}$ and since $b=c-m$ is to be shortest (>2001), $m=667$ (the next largest divisor is $3 \cdot 667=2001$, which makes $b=0$) should be considered. Then $667 \cdot(2 b+667)=9 \cdot 667^{2}$ gives $b=2668$ and $c=2668+667=3335$. One checks that $2001^{2}+2668^{2}=3335^{2}$.

Comment: This triangle is the $(3,4,5)$ triangle since $(2001,2668,3335)=667(3,4,5)$. But recognizing this does not prove that 2668 is the shortest possible side larger than 2001.

Completely or partially solved by:
Undergraduates: Halle Ewbank (Sr. Ch.E.), Ken Moore (Jr.), Jeffrey D. Moser (Fr. MA/CS), Peter Rokosz (Fr. Eng.), Nader Satvat (Fr. Eng.), Stevie Schraudner (Jr. CS/MA), Yee-Ching Yeow (Jr. Math)

Graduates: Gajath Gunatillake (MA), Sravanthi Konduri (CE), Ashish Rao (ECE), Brahma N.R. Vanga (Nuc. Eng.)

Faculty \& Staff: Steven Landy (Phys. at IUPUI), Ralph Shines (GAANN Fellow, MA)
Others: Damir Dzhafarov \& Jake Foster (Sr. \& Soph., resp., Harrison H.S., WL), Jason Gerra (Grad in MA, Rutgers U.), Jonathan Landy (Jr. Warren Central H.S., Indpls.), Ben Tsai (NIST, Laytonsville, MD)

Five unacceptable solutions were received.

