PROBLEM OF THE WEEK

 Solution of Problem No. 2 (Spring 2001 Series)Problem: Given a triangle $A B C$, choose A_{1}, B_{1}, C_{1} on the sides opposite A, B, C respectively so that the centroid of $A_{1} B_{1} C_{1}$ coincides with that of $A B C$. Determine (with proof) the locations of A_{1}, B_{1}, C_{1} so that the ratio of the area of $A_{1} B_{1} C_{1}$ to that of $A B C$ is minimal.

Solution (by the Panel)
An affine transformation of the plane leaves centroids and ratios of corresponding areas invariant. Make an affine transformation that puts the vertices A, B, C at $(0,1),(0,0),(1,0)$ of the $x y$-plane. Then the coordinates of C_{1}, A_{1}, B_{1} are $(0, r),(s, 0),(t, 1-t)$ resp., where $r, s, t \in(0,1)$. The centroid of $\triangle A B C$ is at $\left(\frac{1}{3}, \frac{1}{3}\right)$, that of $\triangle A_{1} B_{1} C_{1}$ is at $\left(\frac{1}{3}(s+t)\right.$, $\frac{1}{3}(r+1-t)$, hence $s+t=1, r+1-t=1$, so $r=t, s=1-t$. Then $2 \operatorname{area}(\triangle A B C)=1$,

$$
2 \operatorname{area}\left(\triangle A_{1} B_{1} C_{1}\right)=\left|\begin{array}{ccc}
0 & t & 1 \\
1-t & 0 & 1 \\
t & 1-t & 1
\end{array}\right|=3 t^{2}-3 t+1=3\left(t-\frac{1}{2}\right)^{2}+\frac{1}{4} \geq \frac{1}{4}
$$

and equality holds if and only if $t=\frac{1}{2}$. So minimal ratio is $\frac{1}{4}$ and it is attained if and only if A_{1}, B_{1}, C_{1} are the midpoints of the sides of $\triangle A B C$.

Also solved by:
Undergraduates: Yee-Ching Yeow (Jr. Math)
Graduates: Wook Kim (MA), Ashish Rao (ECE)
Faculty: Steven Landy (Phys. at IUPUI)

Two unacceptable solutions of Problem 1 were received late.

