
PROBLEM OF THE WEEK

Solution of Problem No. 3 (Spring 2001 Series)

Problem: Show that x4y2z2 + x2y4z2 + x2y2z4 − 4x2y2z2 + 1 ≥ 0 for all (x, y, z) in R3.

Solution (by Wook Kim, Grad. Math)

By the arithmetic and geometric inequality

x1 + x2 + · · ·+ xn

n
≥ n
√
x1x2 · · ·xn, xi ≥ 0,

we have
x4y2z2 + x2y4z2 + x2y2z4 + 1

4
≥ 4
√
x8y8z8 = x2y2z2.

This proves x4y2z2 + x2y4z2 + x2y2z4 − 4x2y2z2 + 1 ≥ 0 for all x, y, z ∈ R3.
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