PROBLEM OF THE WEEK

 Solution of Problem No. 4 (Spring 2001 Series)Problem: Suppose f is a polynomial in n variables, of degree $\leq n-1(n=2,3, \cdots)$. Prove the identity $\sum(-1)^{\epsilon_{1}+\epsilon_{2}+\cdots+\epsilon_{n}} f\left(\epsilon_{1}, \epsilon_{2}, \cdots, \epsilon_{n}\right)=0$, where ϵ_{i} is either 1 or 0 and the sum is over all of the 2^{n} combinations.

Solution (by Steven Landy, Fac. Physics at IUPUI, edited by the Panel)
The identity is linear in f, so it suffices to prove it for f of the form $f\left(x_{1}, \ldots, x_{n}\right)=$ $x_{1}^{p_{1}} x_{2}^{p_{2}} \cdots x_{n}^{p_{n}}$ where $p_{1}+p_{2}+\cdots+p_{n} \leq n-1$. Because of this last restriction, at least one of the p_{i} is 0 , say $p_{n}=0$. Then writing the whole sum as the sum of the terms with $\epsilon_{n}=0$ and those with $\epsilon_{n}=1$, we have
$S=(-1)^{0} \sum_{\epsilon_{1}, \ldots, \epsilon_{n-1}}(-1)^{\epsilon_{1}+\cdots+\epsilon_{n-1}} \epsilon_{1}^{p_{1}} \cdots \epsilon_{n-1}^{p_{n-1}}+(-1)^{1} \sum_{\epsilon_{1}, \ldots, \epsilon_{n-1}}(-1)^{\epsilon_{1}+\cdots+\epsilon_{n-1}} \epsilon_{1}^{p_{1}} \cdots \epsilon_{n-1}^{p_{n-1}}$,
which is the difference of two identical terms, hence $S=0$.

Also solved by:
Undergraduates: Stevie Schraudner (Jr. CS/MA), Eric Tkaczyk (Jr. MA)
Graduates: Amit Shirsat (CS), Thierry Zell (MA)
Others: Mike Hamburg (Jr. St. Joseph's H.S., South Bend)

Three unsatisfactory solutions were received.

Two correct late solutions were received that were mailed from abroad before their deadlines:

Prob. 1 Martin Lukarvoski (Undergrad., Skopje, Macedonia)
Prob. 3 Julien Santini (High School, Paris, France)

