PROBLEM OF THE WEEK

Solution of Problem No. 5 (Spring 2001 Series)

Problem: An integer n has property P if there are integers p and q such that $0<p<q<n$ and the sum $p+(p+1)+\cdots+q$ is dvisible by n. Show that n has property P if and only if n is not a power of 2 .

Solution (by Mike Hamburg, Jr. at St. Joseph HS, South Bend, IN, edited by the Panel)
(i) Suppose n is not a power of $2, n=2^{r}(2 k+1), r \geq 0, k \geq 1$. Let $a=\max \left(2^{r+1}, 2 k+1\right)$, $b=\min \left(2^{r+1}, 2 k+1\right)$. Then $n \geq a>b \geq 2$; also a and b are of opposite parity. Now let

$$
p=\frac{a-b+1}{2}, \quad q=\frac{a+b-1}{2} .
$$

Both p and q are integers and $0<p<q<n$. Also

$$
p+(p+1)+\cdots+q=\frac{1}{2}(p+q)(q-p+1)=\frac{1}{2} a b=n,
$$

so n divides the sum (is actually equal to the sum).
(ii) Suppose $n=2^{k}(k>1)$ and $n \left\lvert\, \frac{1}{2}(p+q)(q-p+1)\right.$, then $2^{k+1} \mid(p+q)(q-p+1)$. One of the two factors is odd, so 2^{k+1} divides either $(p+q)$ or $(q-p+1)$. But $2^{k+1}=2 n>p+q>q-p+1$. This is a contraction.

Also complete or partially solved by:
Undergraduates: Eric Tkaczyk (Jr. MA), Yee-Ching Yeow (Jr. Math)
Graduates: Gajath Gunatillake (MA), Ashish Rao (ECE), Amit Shirsat (CS)
Faculty: Steven Landy (Phys. at IUPUI)
Others: Damir D. Dzhafarov (Sr. Harrison H.S., WL) Santini Julien (Lacordaire H.S., France)

Three unacceptable solutions were received.

