PROBLEM OF THE WEEK

Solution of Problem No. 7 (Spring 2001 Series)

Problem: Let C be a smooth closed curve (no corners) in the plane with a convex interior, and P a given point on C. Show that there are points Q, R on C such that $\triangle P Q R$ is equilateral.

Solution (by Julien Santini, Lacordaire H.S., France; edited by the Panel)
Let an angle of 60° revolve counter-clockwise about P, with initial position of one of the arms tangent to C at P. The intercepts of the two arms are initially 0 and some $q>0$. Turn the angle until the other arm becomes tangent to C, and the intercepts are now some $r>0$ and 0 . Hence the difference of the intercepts changes from $0-q<0$ to $r-0>0$. By continuity there is a position of the two arms $\overline{P Q}, \overline{P R}$ where $|P Q|=|P R|$, hence $\triangle P Q R$ is equilateral.

Also solved by:
Undergraduates: Eric Tkaczyk (Jr. EE/MA), Yee-Ching Yeow (Jr. Math)
Faculty: Steven Landy (Phys. at IUPUI)
Others: Damir D. Dzhafarov (Sr. Harrison H.S., WL) Mike Hamburg (Jr. St. Joseph's H.S., South Bend), Jonathan Landy (Jr. Warren Central H.S., Indpls.)

