PROBLEM OF THE WEEK Solution of Problem No. 9 (Spring 2001 Series)

Problem: Suppose A, B are real $n \times n$ matrices with A + B = I (identity) and rank(A) +rank(B) = n. Show that $A^2 = A$, $B^2 = B$, AB = BA = 0.

Solution (by Vikram Buddhi, Grad. MA, edited by the Panel)

Let V be a vector space of dimension n, on which A and B act. Let $\operatorname{rank}(A) = r$, so $\operatorname{nullity}(A) = n - r$, $\operatorname{nullity}(B) = r$. Let $x \in \operatorname{kernel}(A) \cap \operatorname{kernel}(B)$. Then Ax = 0 and $(I - A)x = 0, \therefore x = 0$. Hence $V = \operatorname{ker}(A) \oplus \operatorname{ker}(B)$. Let arbitrary $x \in V$ be decomposed: $x = x_1 + x_2, x_1 \in \operatorname{ker}(A), x_2 \in \operatorname{ker}(B)$. Then $BAX = BAX_1 + BAX_2 = 0 + ABX_2 = 0$, $\therefore BA = 0$, likewise AB = 0. Also $A - A^2 = AB = 0$, $A = A^2$; $B - B^2 = BA = 0$, $B = B^2$.

Also solved by:

Undergraduates: Eric Tkaczyk (Jr. EE/MA), Yee-Ching Yeow (Jr. Math)

Graduates: Dharmashankar Subramanian (CHE)

Faculty: Steven Landy (Phys. at IUPUI)

Others: Mike Hamburg (Jr. St. Joseph's H.S., South Bend)

Two incorrect solutions were received.