PROBLEM OF THE WEEK

 Solution of Problem No. 9 (Spring 2001 Series)Problem: Suppose A, B are real $n \times n$ matrices with $A+B=I$ (identity) and $\operatorname{rank}(A)+$ $\operatorname{rank}(B)=n$. Show that $A^{2}=A, B^{2}=B, A B=B A=0$.

Solution (by Vikram Buddhi, Grad. MA, edited by the Panel)
Let V be a vector space of dimension n, on which A and B act. Let $\operatorname{rank}(A)=r$, so $\operatorname{nullity}(A)=n-r$, nullity $(B)=r$. Let $x \in \operatorname{kernel}(A) \cap \operatorname{kernel}(B)$. Then $A x=0$ and $(I-A) x=0, \therefore x=0$. Hence $V=\operatorname{ker}(A) \oplus \operatorname{ker}(B)$. Let arbitrary $x \in V$ be decomposed: $x=x_{1}+x_{2}, x_{1} \in \operatorname{ker}(A), x_{2} \in \operatorname{ker}(B)$. Then $B A X=B A X_{1}+B A X_{2}=0+A B X_{2}=0$, $\therefore B A=0$, likewise $A B=0$. Also $A-A^{2}=A B=0, A=A^{2} ; B-B^{2}=B A=0, B=B^{2}$.

Also solved by:
Undergraduates: Eric Tkaczyk (Jr. EE/MA), Yee-Ching Yeow (Jr. Math)
Graduates: Dharmashankar Subramanian (CHE)
Faculty: Steven Landy (Phys. at IUPUI)
Others: Mike Hamburg (Jr. St. Joseph's H.S., South Bend)

Two incorrect solutions were received.

