PROBLEM OF THE WEEK

Solution of Problem No. 11 (Spring 2001 Series)

Problem: For $n=1,2, \cdots$, set $S_{n}=\sum_{k=0}^{3 n}\binom{3 n}{k}, T_{n}=\sum_{k=0}^{n}\binom{3 n}{3 k}$. Prove that $\left|S_{n}-3 T_{n}\right|=2$.

Solution (by Steven Landy, Faculty, Physics at IUPUI)
Let $w=e^{2 \pi i / 3}$, so $w^{2}=\bar{w}$ (conjugate), $w^{3}=1,1+w+w^{2}=0$. Then

$$
S_{n}=\sum_{k=0}^{n}\binom{3 n}{k} 1^{k}=(1+1)^{3 n}
$$

by the Binomial Theorem. Also

$$
U_{n}=\sum_{k=0}^{n}\binom{3 n}{k} w^{k}=(1+w)^{3 n}
$$

and

$$
V_{n}=\sum_{k=0}^{n}\binom{3 n}{k} w^{2 k}=(1+\bar{w})^{3 n} .
$$

Because $1^{k}+w^{k}+w^{2 k}=0$ unless k is a multiple of 3 , when it is $=3$,

$$
S_{n}+U_{n}+V_{n}=3 T_{n}
$$

and so

$$
\begin{gathered}
3 T_{n}-S_{n}=U_{n}+V_{n}=(1+w)^{3 n}+(1+\bar{w})^{3 n}=\left(-w^{2}\right)^{3 n}+\left(-\bar{w}^{2}\right)^{3 n} \\
=(-1)^{n}\left[e^{4 \pi i n}+e^{-4 \pi i n}\right]=2(-1)^{n}
\end{gathered}
$$

so $\left|S_{n}-3 T_{n}\right|=2$.

Also solved by:
Undergraduates: Stevie Schraudner (Jr. CS/MA), Eric Tkaczyk (Jr. EE/MA)
Graduates: Ashish Rao (ECE), Dharmashankar Subramanian (CHE)
Others: Jonathan Landy (Jr. Warren Central H.S., Indpls.), Bob Pratt (Grad. UNC Chapel Hill), Julien Santini (Lacordaire H.S., France), Aditya S. Utturwar (Aero, Georgia Tech)

