PROBLEM OF THE WEEK

Solution of Problem No. 13 (Spring 2001 Series)

Problem: Let p be a prime number and let J be the set of all 2×2 matrices, $\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)$ where $a, b, c, d \in\{0,1, \cdots, p-1\}$, and which satisfy $a+b \equiv 1(\bmod p)$ and $a d-b c \equiv 0$ $(\bmod p)$. How many matrices are in J ?

Solution (by Steven Landy, Fac. Phys. at IUPUI)
\underline{a} can take on p values: $0,1, \ldots, p-1 ; b \equiv 1-a$ is then fixed.
If $a \equiv 0$ then $b \equiv 1, c \equiv 0$, while d can be one of $0,1, \ldots, p-1$.
If $a \equiv 1$ then $b \equiv 0, d \equiv 0$, while c can be one of $0,1, \ldots, p-1$.
If $a \not \equiv 0, a \not \equiv 1$, then $b \not \equiv 0$ and in $a d \equiv b c, d$ can be any of $0,1, \ldots, p-1$; and $c \equiv a d b^{-1}$, where b^{-1} is the unique reciprocal of $b \not \equiv 0(\bmod p)$.

Thus, for any choice of \underline{a} there are p ways to assign the remaining terms. Hence, the cardinality of J is p^{2}.

Also solved by:
Undergraduates: Eric Tkaczyk (Jr. EE/MA)
Others: Jonathan Landy (Jr. Warren Central H.S., Indpls.), Julien Santini (Lacordaire H.S., France), Aditya S. Utturwar (Aero, Georgia Tech)

