PROBLEM OF THE WEEK

 Solution of Problem No. 3 (Spring 2002 Series)Problem: Determine the number a for which $\int_{0}^{\pi}[\sin x-a x(\pi-x)]^{2} d x$ is minimal.
Solution (by the Panel)
We present our own solution, which avoids the testing of the critical point of the quadratic polynomial

$$
I(a)=a^{2} \int_{0}^{\pi} x^{2}(\pi-x)^{2} d x-2 a \int_{0}^{\pi} x(\pi-x) \sin x d x+\int_{0}^{\pi} \sin ^{2} x d x
$$

Carrying out the integrations (the main tool is integration by parts), one obtains

$$
\begin{aligned}
I(a) & =\frac{\pi^{5}}{30} a^{2}-8 a+\frac{\pi}{2} \\
& =\frac{\pi^{5}}{30}\left(a-\frac{120}{\pi^{5}}\right)^{2}+\frac{\pi}{2}-\frac{480}{x^{5}} \geq \frac{\pi}{2}-\frac{480}{\pi^{5}}
\end{aligned}
$$

and equality holds in the last inequality if and only if $a=120 / \pi^{5}$. Therefore, this is the value for which $I(a)$ is a minimum.

Solved by:
Undergraduates: Damir Dzhafarov (Fr. MA), Haizhi Lin (Jr. MA), Yue Wei Lu (So. EE), Eric Tkaczyk (Jr. EE/MA), Chit Hong Yam (Fr. Engr.)

Graduates: Ali R. Butt (ECE), Chris Lomont (MA), K. H. Sarma (Nucl E), Brahma N.R. Vanga (Nucl E), Melissa Wilson (MA)

Faculty: Fabio Milner (MA)
Others: Prithwijit De (STAT at U. Coll. Cork, Ireland), Jake Foster (Jr. Harrison H.S., WL), Peter Montgomery (San Rafael, CA), Alex Rand (N.M. Tech, Sorocco)

Three incorrect solutions were received.

