PROBLEM OF THE WEEK

 Solution of Problem No. 4 (Spring 2002 Series)Problem: Let $h(t)$ denote the point on the hyperbola H whose cartesian coordinates are $x=\cosh t, y=\sinh t$. Let $Q(H)$ be the set of rational points on H (i.e. both x and y are rational numbers).
a) Show that if $h\left(t_{1}\right)$, and $h\left(t_{2}\right)$ are in $Q(H)$, then so are $h\left(t_{1} \pm t_{2}\right)$.
b) Show that if $t=\cosh ^{-1} \frac{13}{12}$, then $h(k t) \in Q(H)$ for every integer k.

Solution (by Fabio Augusto Milner, Fac. Math, edited by the Panel)
First note that $h(t) \in Q(H)$ if and only if $e^{t}=\frac{1}{2}\left(e^{t}+e^{-t}\right)+\frac{1}{2}\left(e^{t}-e^{-t}\right)=x+y$ is in Q^{+} (the class of postive rational numbers). If $h\left(t_{1}\right)$ and $h\left(t_{2}\right)$ are in $Q(H)$ then $e^{t_{1}}$ and $e^{t_{2}}$ are rational and so are $e^{t_{1} \pm t_{2}}=e^{t_{1}} \cdot e^{ \pm t_{2}}$, hence $h\left(t_{1} \pm t_{2}\right) \in Q(H)$. If $\cosh t=\frac{13}{12}$ then $\sinh t= \pm\left(1-\left(\frac{13}{12}\right)^{2}\right)^{\frac{1}{2}}= \pm \frac{5}{12}$, hence $e^{t} \in Q^{+}$and $e^{k t}=\left(e^{t}\right)^{k} \in Q^{+}$for every integer k.

Also solved by:
Undergraduates: Damir Dzhafarov (Fr. MA), Haizhi Lin (Jr. MA), Yue Wei Lu (So. EE), Chit Hong Yam (Fr. Engr.)

Graduates: Ali R. Butt (ECE), Sravanthi Konduri (CE), Chris Lomont (MA), K. H. Sarma (Nucl E), Brahma N.R. Vanga (Nucl E)

Faculty: Steven Landy (Phys. at IUPUI)
Others: Prithwijit De (STAT at U. Coll. Cork, Ireland), Aditya Uttarwar (Grad. AE, Georgia Tech)

