PROBLEM OF THE WEEK Solution of Problem No. 4 (Spring 2002 Series)

Problem: Let h(t) denote the point on the hyperbola H whose cartesian coordinates are $x = \cosh t$, $y = \sinh t$. Let Q(H) be the set of rational points on H (i.e. both x and y are rational numbers).

- a) Show that if $h(t_1)$, and $h(t_2)$ are in Q(H), then so are $h(t_1 \pm t_2)$.
- b) Show that if $t = \cosh^{-1}\frac{13}{12}$, then $h(kt) \in Q(H)$ for every integer k.

Solution (by Fabio Augusto Milner, Fac. Math, edited by the Panel)

First note that $h(t) \in Q(H)$ if and only if $e^t = \frac{1}{2}(e^t + e^{-t}) + \frac{1}{2}(e^t - e^{-t}) = x + y$ is in Q^+ (the class of postive rational numbers). If $h(t_1)$ and $h(t_2)$ are in Q(H) then e^{t_1} and e^{t_2} are rational and so are $e^{t_1 \pm t_2} = e^{t_1} \cdot e^{\pm t_2}$, hence $h(t_1 \pm t_2) \in Q(H)$. If $\cosh t = \frac{13}{12}$ then $\sinh t = \pm \left(1 - \left(\frac{13}{12}\right)^2\right)^{\frac{1}{2}} = \pm \frac{5}{12}$, hence $e^t \in Q^+$ and $e^{kt} = (e^t)^k \in Q^+$ for every integer k.

Also solved by:

<u>Undergraduates</u>: Damir Dzhafarov (Fr. MA), Haizhi Lin (Jr. MA), Yue Wei Lu (So. EE), Chit Hong Yam (Fr. Engr.)

<u>Graduates</u>: Ali R. Butt (ECE), Sravanthi Konduri (CE), Chris Lomont (MA), K. H. Sarma (Nucl E), Brahma N.R. Vanga (Nucl E)

Faculty: Steven Landy (Phys. at IUPUI)

<u>Others</u>: Prithwijit De (STAT at U. Coll. Cork, Ireland), Aditya Uttarwar (Grad. AE, Georgia Tech)