PROBLEM OF THE WEEK

Solution of Problem No. 5 (Spring 2002 Series)

Problem: For $e \neq 0$, determine the roots of the equation $x^{5}+a x^{4}+b x^{3}+c x^{2}+d x+e=0$ as functions of a, d, and e, given that the equation has two roots whose product is 1 and two other roots whose product is -1 .

Solution (by the Panel)
Let the roots be $p, \frac{1}{p}, q,-\frac{1}{q}, r$.
(1) $p \cdot \frac{1}{p} \cdot q \cdot \frac{-1}{q} \cdot r=-e \quad$ so $\quad r=e$.
(2) $\left(p+\frac{1}{p}\right)+\left(q-\frac{1}{q}\right)+r=-a \quad$ so $\quad\left(p+\frac{1}{p}\right)+\left(q-\frac{1}{q}\right)=-(a+e)$.
(3) $\frac{-e}{p}-e p-\frac{e}{q}+e q-\frac{e}{r}=d \quad$ so $\quad\left(p+\frac{1}{p}\right)-\left(q-\frac{1}{q}\right)=-\frac{d+1}{e}$.

From this

$$
\begin{gathered}
\left.p+\frac{1}{p}=\frac{1}{2}(-(a+e))-\frac{d+1}{e}\right)=-\frac{1}{2 e}\left(e^{2}+a e+d+1\right)=A, \\
q-\frac{1}{q}=\frac{1}{2}\left(\frac{d+1}{e}-(a+e)\right)=-\frac{1}{2 e}\left(e^{2}+a e-d-1\right)=B .
\end{gathered}
$$

Then $p^{2}-A p+1=0$ so $p=\frac{1}{2}\left(A \pm \sqrt{A^{2}-4}\right)$ and $\frac{1}{p}=A-p=\frac{1}{2}\left(A \mp \sqrt{A^{2}-4}\right)$.
We may use the plus sign for p and the minus sign for $\frac{1}{p}$. Similarly $q=\frac{1}{2}\left(B+\sqrt{B^{2}+4}\right) \frac{1}{q}=\frac{1}{2}\left(B-\sqrt{B^{2}+4}\right)$.

Solved by:
Undergraduates: Damir Dzhafarov (Fr. MA), Haizhi Lin (Jr. MA), Yue Wei Lu (So. EE/MA), Chit Hong Yam (Fr. Engr.)

Graduates: Fredy Aquino (PHYS), Sravanthi Konduri (CE), Chris Lomont (MA), Brahma N.R. Vanga (Nucl E)

Faculty: Steven Landy (Phys. at IUPUI)
Others: Tom Engelsman (Wheeling, IL), Aditya Utturwar (Grad. AE, Georgia Tech)

