PROBLEM OF THE WEEK

Solution of Problem No. 12 (Spring 2002 Series)

Problem: Determine all the real 2×2 matrices $A=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)$ satisfying $A^{2}+A+I=0$.
Solution (by Damir Dzhafarov, Fr. MA, edited by the Panel)
Expanding the equation yields the system

$$
\left\{\begin{array}{l}
a^{2}+a+b c+1=0 \\
a b+b d+b=0 \\
a c+c d+c=0 \\
d^{2}+d+b c+1=0
\end{array}\right.
$$

Solving (i) and (iv) for a and d respectively gives $a=\frac{-1 \pm \sqrt{-3-4 b c}}{2}$ and $d=\frac{-1 \pm \sqrt{-3-4 b c}}{2}$, whence it follows that $b c \leq-3 / 4$ and consequently $b \neq 0$ and $c \neq 0$. Thus, (ii) may be divided by b and (iii) by c to obtain $a+d=-1$, which is satisfied only if $b c \leq-3 / 4$. The sought solutions are therefore

$$
A=\left(\begin{array}{cc}
\frac{-1 \pm \sqrt{-3-4 m n}}{2} & m \\
n & \frac{-1 \mp \sqrt{-3-4 m n}}{2}
\end{array}\right)
$$

where m, n arbitrary real numbers except $m n<-3 / 4$.

Also solved by:
Undergraduates: Eric Tkaczyk (Jr. EE/MA)
Graduates: Dharmashankar Subramanian (ChE)
Faculty: Steven Landy (Phys. at IUPUI)
Others: Dane Brooke (Boeing, Seattle), J.L.C. (Fishers, IN), John G. DelGreco (MA, Loyola U.), Leo Sheck (Medical Sch, U. Auckland, NZ),

Five unacceptable solutions were received.

